Garry Jacyna, Damon Frezza, David M. Slater, James R. Thompson
{"title":"The Multifractal Gaussian Mixture Model for unsupervised segmentation of complex data sets","authors":"Garry Jacyna, Damon Frezza, David M. Slater, James R. Thompson","doi":"10.1016/j.spasta.2025.100879","DOIUrl":null,"url":null,"abstract":"<div><div>We derive the Multifractal Gaussian Mixture Model algorithm for decomposing data sets into different multifractal regimes building on the empirical observation that simulated multifractals have log wavelet leaders that are well-approximated by a Gaussian distribution. We test the algorithm on composite images constructed from multifractal random walks with known multifractal spectra. The algorithm is able to correctly segment the pixels corresponding to different multifractals when the constituent multifractals are most distinct from each other. It also estimates the multifractal parameters with minimal error when compared to the theoretical spectra used to generate the original multifractal random walks. We also apply the algorithm to satellite images with varying degrees of cloud cover taken from the LandSat 8 Cloud Validation Data set. The algorithm is able to segment the pixels into their corresponding cloud mask category, and it detects different texture and features in the images that are unrelated to clouds. The results indicate that the Multifractal Gaussian Mixture Model algorithm is well-suited for semi-automated unsupervised data segmentation when the data being analyzed exhibit complex, scale-invariant characteristics.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100879"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000016","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We derive the Multifractal Gaussian Mixture Model algorithm for decomposing data sets into different multifractal regimes building on the empirical observation that simulated multifractals have log wavelet leaders that are well-approximated by a Gaussian distribution. We test the algorithm on composite images constructed from multifractal random walks with known multifractal spectra. The algorithm is able to correctly segment the pixels corresponding to different multifractals when the constituent multifractals are most distinct from each other. It also estimates the multifractal parameters with minimal error when compared to the theoretical spectra used to generate the original multifractal random walks. We also apply the algorithm to satellite images with varying degrees of cloud cover taken from the LandSat 8 Cloud Validation Data set. The algorithm is able to segment the pixels into their corresponding cloud mask category, and it detects different texture and features in the images that are unrelated to clouds. The results indicate that the Multifractal Gaussian Mixture Model algorithm is well-suited for semi-automated unsupervised data segmentation when the data being analyzed exhibit complex, scale-invariant characteristics.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.