Yuanyuan Shi, Xianhu Liang, Bin Yuan, Victoria Chen, Haitong Li, Fei Hui, Zhouchangwan Yu, Fang Yuan, Eric Pop, H.-S. Philip Wong, Mario Lanza
{"title":"Electronic synapses made of layered two-dimensional materials","authors":"Yuanyuan Shi, Xianhu Liang, Bin Yuan, Victoria Chen, Haitong Li, Fei Hui, Zhouchangwan Yu, Fang Yuan, Eric Pop, H.-S. Philip Wong, Mario Lanza","doi":"10.1038/s41928-018-0118-9","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing systems, which use electronic synapses and neurons, could overcome the energy and throughput limitations of today’s computing architectures. However, electronic devices that can accurately emulate the short- and long-term plasticity learning rules of biological synapses remain limited. Here, we show that multilayer hexagonal boron nitride (h-BN) can be used as a resistive switching medium to fabricate high-performance electronic synapses. The devices can operate in a volatile or non-volatile regime, enabling the emulation of a range of synaptic-like behaviour, including both short- and long-term plasticity. The behaviour results from a resistive switching mechanism in the h-BN stack, based on the generation of boron vacancies that can be filled by metallic ions from the adjacent electrodes. The power consumption in standby and per transition can reach as low as 0.1 fW and 600 pW, respectively, and with switching times reaching less than 10 ns, demonstrating their potential for use in energy-efficient brain-like computing. Vertically structured electronic synapses, which exhibit both short- and long-term plasticity, can be created using layered two-dimensional hexagonal boron nitride.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"1 8","pages":"458-465"},"PeriodicalIF":33.7000,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41928-018-0118-9","citationCount":"390","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-018-0118-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 390
Abstract
Neuromorphic computing systems, which use electronic synapses and neurons, could overcome the energy and throughput limitations of today’s computing architectures. However, electronic devices that can accurately emulate the short- and long-term plasticity learning rules of biological synapses remain limited. Here, we show that multilayer hexagonal boron nitride (h-BN) can be used as a resistive switching medium to fabricate high-performance electronic synapses. The devices can operate in a volatile or non-volatile regime, enabling the emulation of a range of synaptic-like behaviour, including both short- and long-term plasticity. The behaviour results from a resistive switching mechanism in the h-BN stack, based on the generation of boron vacancies that can be filled by metallic ions from the adjacent electrodes. The power consumption in standby and per transition can reach as low as 0.1 fW and 600 pW, respectively, and with switching times reaching less than 10 ns, demonstrating their potential for use in energy-efficient brain-like computing. Vertically structured electronic synapses, which exhibit both short- and long-term plasticity, can be created using layered two-dimensional hexagonal boron nitride.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.