Material Perspective for Hole Transport Material-Free Perovskite Solar Cell: A Mini Review

S. S. Nisa, T. Paramitha, H. Aliwarga, H. Widiyandari, Agus Supriyanto, Rista Tristanti Kisdina, Rifdha Hendianti Kisdina, Nanda Yudi Shofi Subekti, Marcus Saputra
{"title":"Material Perspective for Hole Transport Material-Free Perovskite Solar Cell: A Mini Review","authors":"S. S. Nisa, T. Paramitha, H. Aliwarga, H. Widiyandari, Agus Supriyanto, Rista Tristanti Kisdina, Rifdha Hendianti Kisdina, Nanda Yudi Shofi Subekti, Marcus Saputra","doi":"10.4028/p-0pbnie","DOIUrl":null,"url":null,"abstract":"The technology for converting energy from sunlight (photovoltaic) has entered the third generation. The Perovskite Solar Cell (PSC) can compete with the efficiency of current silicon solar cells. However, from the commercial side, there are still obstacles due to the high price of the hole transport material. This component prevents electrons from being transferred to the anode. It also extracts and transports active layer holes to the electrode. This material can be removed since perovskite material can play a dual role. Perovskite materials can be utilized as light harvesters and hole conductors. However, the absence of one component in the PSC structure certainly affects PSC performance. Therefore, in this review, several developments of hole-transport material-free PSC are discussed regarding the type of material used. It starts from the electron transport layer, perovskite layer, and counter electrode. The TiO2 material is most often used for the electron transport layer because it can achieve a power conversion efficiency (PCE) of >12%. Moreover, with the addition of doping, the PCE value can reach 14.06%. In addition, for the perovskite layer, with a slight modification of the MAPbI3 material, the PCE value is >16%.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":"10 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-0pbnie","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The technology for converting energy from sunlight (photovoltaic) has entered the third generation. The Perovskite Solar Cell (PSC) can compete with the efficiency of current silicon solar cells. However, from the commercial side, there are still obstacles due to the high price of the hole transport material. This component prevents electrons from being transferred to the anode. It also extracts and transports active layer holes to the electrode. This material can be removed since perovskite material can play a dual role. Perovskite materials can be utilized as light harvesters and hole conductors. However, the absence of one component in the PSC structure certainly affects PSC performance. Therefore, in this review, several developments of hole-transport material-free PSC are discussed regarding the type of material used. It starts from the electron transport layer, perovskite layer, and counter electrode. The TiO2 material is most often used for the electron transport layer because it can achieve a power conversion efficiency (PCE) of >12%. Moreover, with the addition of doping, the PCE value can reach 14.06%. In addition, for the perovskite layer, with a slight modification of the MAPbI3 material, the PCE value is >16%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无空穴传输材料的透镜太阳能电池的材料视角:微型综述
从太阳光中转换能量(光伏)的技术已进入第三代。Perovskite 太阳能电池(PSC)的效率可与目前的硅太阳能电池相媲美。然而,在商业方面,由于空穴传输材料的高昂价格,仍然存在障碍。这种材料可以防止电子转移到阳极。它还能提取活性层空穴并将其传输到电极。这种材料可以去除,因为过氧化物材料可以发挥双重作用。透镜材料可用作光收集器和空穴导体。然而,PSC 结构中缺少一种成分肯定会影响 PSC 的性能。因此,本综述就所用材料的类型讨论了无空穴传输材料 PSC 的几种发展情况。本文从电子传输层、过氧化物层和对电极入手。电子传输层最常用的是二氧化钛材料,因为它的功率转换效率(PCE)大于 12%。此外,在添加掺杂剂后,PCE 值可达到 14.06%。此外,对于过氧化物层,只要对 MAPbI3 材料稍加改良,其 PCE 值就能大于 16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Friction Stir Weld (FSW) Process Parameters on Tensile Strength, Macro Structure, and Hardness in Results of AA7075 Butt Joints Study of the Physic-Mechanical Properties of a Typha Concrete Composites: A Possible New Material for Sustainable Construction Incorporating Graphene Nanofiller for the Improvement of Hydrophobic Properties of Cassava Peel Starch Bioplastic Microstructure and Mechanical Characteristics of Friction Welded Joint between Alumina and Aluminum Casting Alloy Effect of Silanized Zirconium Oxide (ZrO2) Filler on Hardness of Acrylic-Based Denture Teeth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1