A. Ganda, Diah Wulandari, Firman Yasa Utama, W. Warju, Dyah Riandadari, Dewi Puspitasari, Lena Citra Manggalasari
{"title":"Incorporating Graphene Nanofiller for the Improvement of Hydrophobic Properties of Cassava Peel Starch Bioplastic","authors":"A. Ganda, Diah Wulandari, Firman Yasa Utama, W. Warju, Dyah Riandadari, Dewi Puspitasari, Lena Citra Manggalasari","doi":"10.4028/p-9fcqbm","DOIUrl":null,"url":null,"abstract":"Cassava starch bioplastics have been known well as an alternative plastic replacing conventional petrochemical plastics, which have difficulty degrading rapidly in the environment. Cassava peels as waste is a potential eco-friendly starch source for biodegradable plastic. This study investigated the effect of graphene as a nanofiller on the hydrophobic properties of cassava peel starch film. Bioplastic was synthesized using the melt blending method by adding graphene in various amounts, which were 3 wt%, 5 wt%, and 7 wt%. Graphene was found to be able to increase the contact angle of the films up to 93° with the addition of 5 wt%. Graphene also affects water absorption properties. These results indicate that the hydrophobic properties of cassava peel starch films could be modified by adding graphene nanofiller.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":"32 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-9fcqbm","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cassava starch bioplastics have been known well as an alternative plastic replacing conventional petrochemical plastics, which have difficulty degrading rapidly in the environment. Cassava peels as waste is a potential eco-friendly starch source for biodegradable plastic. This study investigated the effect of graphene as a nanofiller on the hydrophobic properties of cassava peel starch film. Bioplastic was synthesized using the melt blending method by adding graphene in various amounts, which were 3 wt%, 5 wt%, and 7 wt%. Graphene was found to be able to increase the contact angle of the films up to 93° with the addition of 5 wt%. Graphene also affects water absorption properties. These results indicate that the hydrophobic properties of cassava peel starch films could be modified by adding graphene nanofiller.