Wei Liu, Hua Huang, Yuan Hu, Bing Han, Shengzheng Wang
{"title":"A Robust GNSS Sensors in Presence of Signal Blockage for USV Application","authors":"Wei Liu, Hua Huang, Yuan Hu, Bing Han, Shengzheng Wang","doi":"10.1088/1361-6501/ad180b","DOIUrl":null,"url":null,"abstract":"\n Unmanned surface vehicle (USV) can navigate autonomously via the Global Navigation Satellite System (GNSS). However, the traditional GNSS scalar tracking loop easily loses lock in low carrier-to-noise ratio (CNR) situations, such as signal occlusion and weak signals. Meanwhile, an increase in the carrier/code phase error leads to an increase in the measurement error of the navigation filter, which decreases the accuracy of the position estimation. To solve this problem, this paper proposes a carrier and code tracking structure based on a forward and backward Kalman filter to dynamically adjust the gain of the vector tracking loop. The carrier and code phase errors calculated by the loop discriminators were linearly transformed into pseudo-range rate and pseudo-range errors after filtering and smoothing, which were used as the measurements of the navigation filter. The signal CNR was used to adaptively adjust the measurement noise covariance matrix of the loop filters. The field tests used a commercial receiver's navigation solution as the reference. In the stationary test, the proposed structure reduced the localization error by 44.3% compared with the traditional methods. In kinematic experiments, the proposed structure reduced the carrier and code phase errors in a harsh signal environment and improved the positioning accuracy at the source. The test results demonstrate that the proposed GNSS tracking method can provide a possible solution for the development of navigation systems for USV.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"33 24","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad180b","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned surface vehicle (USV) can navigate autonomously via the Global Navigation Satellite System (GNSS). However, the traditional GNSS scalar tracking loop easily loses lock in low carrier-to-noise ratio (CNR) situations, such as signal occlusion and weak signals. Meanwhile, an increase in the carrier/code phase error leads to an increase in the measurement error of the navigation filter, which decreases the accuracy of the position estimation. To solve this problem, this paper proposes a carrier and code tracking structure based on a forward and backward Kalman filter to dynamically adjust the gain of the vector tracking loop. The carrier and code phase errors calculated by the loop discriminators were linearly transformed into pseudo-range rate and pseudo-range errors after filtering and smoothing, which were used as the measurements of the navigation filter. The signal CNR was used to adaptively adjust the measurement noise covariance matrix of the loop filters. The field tests used a commercial receiver's navigation solution as the reference. In the stationary test, the proposed structure reduced the localization error by 44.3% compared with the traditional methods. In kinematic experiments, the proposed structure reduced the carrier and code phase errors in a harsh signal environment and improved the positioning accuracy at the source. The test results demonstrate that the proposed GNSS tracking method can provide a possible solution for the development of navigation systems for USV.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.