Tianyu Li, Zhigui Ren, Xiaoping Pang, Dingjun Chen, Shusheng Cao
{"title":"Dynamic digging force modeling and comparative analysis of backhoe hydraulic excavators","authors":"Tianyu Li, Zhigui Ren, Xiaoping Pang, Dingjun Chen, Shusheng Cao","doi":"10.1088/1361-6501/ad1814","DOIUrl":null,"url":null,"abstract":"\n The evaluation of excavator performance relies heavily on digging force, which serves as a crucial indicator. However, the accuracy of performance assessment is hindered by the absence of a suitable method to characterize the dynamic digging capacity of excavators. This study addresses this limitation by proposing an approach to establish a set of solution-limited inequalities for dynamic digging force. The approach incorporates D'Alembert's principle and composite digging, while considering the influence of inertia force. Furthermore, to mitigate the issue of bucket tooth tip trajectory shaking caused by discontinuous posture during excavation, an amount of measurement data from a 20-ton machine is utilized to construct a consistent theoretical digging trajectory. The theoretical trajectory is subjected to numerical verification to determine the dynamic digging force along the trajectory. A comparative analysis is then conducted, contrasting the obtained dynamic digging force with different theoretical digging forces and measured resistances. Additionally, the dynamic digging forces within the selected digging area of the machine are characterized, without accounting for attitude continuity. The findings demonstrate that the dynamic digging force effectively captures the excavator's performance along the trajectory, and it also provides an excellent characterization of the digging force at discrete digging spots.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"58 20","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1814","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The evaluation of excavator performance relies heavily on digging force, which serves as a crucial indicator. However, the accuracy of performance assessment is hindered by the absence of a suitable method to characterize the dynamic digging capacity of excavators. This study addresses this limitation by proposing an approach to establish a set of solution-limited inequalities for dynamic digging force. The approach incorporates D'Alembert's principle and composite digging, while considering the influence of inertia force. Furthermore, to mitigate the issue of bucket tooth tip trajectory shaking caused by discontinuous posture during excavation, an amount of measurement data from a 20-ton machine is utilized to construct a consistent theoretical digging trajectory. The theoretical trajectory is subjected to numerical verification to determine the dynamic digging force along the trajectory. A comparative analysis is then conducted, contrasting the obtained dynamic digging force with different theoretical digging forces and measured resistances. Additionally, the dynamic digging forces within the selected digging area of the machine are characterized, without accounting for attitude continuity. The findings demonstrate that the dynamic digging force effectively captures the excavator's performance along the trajectory, and it also provides an excellent characterization of the digging force at discrete digging spots.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.