Uncertainties estimation in surveying measurands: application to volumes.

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Science and Technology Pub Date : 2023-12-21 DOI:10.1088/1361-6501/ad1803
Enrique Covián Regales, V. Puente, Miguel Casero, Pablo Cienfuegos Suárez
{"title":"Uncertainties estimation in surveying measurands: application to volumes.","authors":"Enrique Covián Regales, V. Puente, Miguel Casero, Pablo Cienfuegos Suárez","doi":"10.1088/1361-6501/ad1803","DOIUrl":null,"url":null,"abstract":"\n Volume represents a measurand of great interest in civil engineering and construction works. The estimation of this measurand is a problem already solved by surveying engineering, but the quantification of its uncertainty has been overlooked. As a result, the inaccurate estimation of the volume can lead to significant deviations in the execution costs of earthworks. Moreover, it is not possible to comply with the internationally accepted requirements concerning the expression of measures with an indication of its uncertainty, i.e., the guidelines of the BIPM (Bureau International des Poids et Mesures). In this context, this paper presents a methodology for the quantification of uncertainty in the surveying measurement of volumes, which is generally carried out through digital terrain models processed by CAD or specific surveying software. Two methods for volume estimation are presented and the variance-covariance propagation laws are applied to each of them, leading to the computation of volume uncertainty from measures of position coordinates for which uncertainties are known. Then, the developed methods for uncertainty estimation are successfully tested in different scenarios. The conceptual and mathematical developments for the uncertainty quantification in the computation of volumes resulted in closed-form algorithms implemented in MATLAB that can be potentially incorporated into commercial surveying software.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"61 15","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1803","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Volume represents a measurand of great interest in civil engineering and construction works. The estimation of this measurand is a problem already solved by surveying engineering, but the quantification of its uncertainty has been overlooked. As a result, the inaccurate estimation of the volume can lead to significant deviations in the execution costs of earthworks. Moreover, it is not possible to comply with the internationally accepted requirements concerning the expression of measures with an indication of its uncertainty, i.e., the guidelines of the BIPM (Bureau International des Poids et Mesures). In this context, this paper presents a methodology for the quantification of uncertainty in the surveying measurement of volumes, which is generally carried out through digital terrain models processed by CAD or specific surveying software. Two methods for volume estimation are presented and the variance-covariance propagation laws are applied to each of them, leading to the computation of volume uncertainty from measures of position coordinates for which uncertainties are known. Then, the developed methods for uncertainty estimation are successfully tested in different scenarios. The conceptual and mathematical developments for the uncertainty quantification in the computation of volumes resulted in closed-form algorithms implemented in MATLAB that can be potentially incorporated into commercial surveying software.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测量中的不确定性估计:应用于体积。
在土木工程和建筑工程中,体积是一个非常重要的测量值。测量工程已经解决了这一测量值的估算问题,但却忽视了对其不确定性的量化。因此,不准确的工程量估算会导致土方工程的执行成本出现重大偏差。此外,在表达测量值时,不可能符合国际公认的要求,即国际计量局(BIPM)的指导方针。在此背景下,本文介绍了一种对体积测量中的不确定性进行量化的方法,体积测量通常是通过 CAD 或特定测量软件处理的数字地形模型进行的。本文介绍了两种体积估算方法,并对每种方法应用了方差-协方差传播定律,从而通过已知不确定性的位置坐标测量计算出体积的不确定性。然后,所开发的不确定性估算方法在不同场景中进行了成功测试。体积计算中不确定性量化的概念和数学发展产生了在 MATLAB 中实施的闭式算法,这些算法有可能被纳入商业测量软件中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
期刊最新文献
Role of extrinsic factors on magnetoelastic resonance biosensors sensitivity Improved performance of BDS-3 time and frequency transfer based on an epoch differenced model with receiver clock estimation Development of Experimental Device for Inductive Heating of Magnetic Nanoparticles Weakly supervised medical image registration with multi-information guidance A soft sensor model based on an improved semi-supervised stacked autoencoder for just-in-time updating of cement clinker production process data f-CaO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1