{"title":"A dual-weight domain adversarial network for partial domain fault diagnosis of feedwater heater system","authors":"Xiaoxia Wang, Xiaoxuan Zhang","doi":"10.1088/1361-6501/ad17a0","DOIUrl":null,"url":null,"abstract":"\n Domain adaptation (DA) approaches have received significant attention in industrial cross-domain fault diagnosis. However, the scarcity of sufficient labeled fault data, particularly under varying loading conditions and harsh operational environments, can give rise to distinct label spaces between two domains, thereby impeding the application of DA-based diagnosis methods. In this paper, we propose a novel dual-weight domain adversarial network (DWDAN) for diagnosing partial domain faults of feedwater heater system in a large-scale power unit, where the target label space is a subset of the source domain. Firstly, domain adversarial network with an instance-based feature learning strategy is constructed to capture domain-invariant and class-discriminative features hidden in raw process data, thereby enhancing feature extraction and generalization abilities of fault diagnosis. Furthermore, a dual-stage reweighted induction module is designed to quantify the contribution of samples from both class-level and sample-level for selective adaptation. This module can automatically eliminate outlier fault categories in the source domain and facilitates alignment of feature distributions for shared fault categories. Comprehensive experiments conducted on the feedwater heater system of a 600-MW coal-fired generating unit demonstrate the outstanding performance of DWDAN.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"29 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad17a0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Domain adaptation (DA) approaches have received significant attention in industrial cross-domain fault diagnosis. However, the scarcity of sufficient labeled fault data, particularly under varying loading conditions and harsh operational environments, can give rise to distinct label spaces between two domains, thereby impeding the application of DA-based diagnosis methods. In this paper, we propose a novel dual-weight domain adversarial network (DWDAN) for diagnosing partial domain faults of feedwater heater system in a large-scale power unit, where the target label space is a subset of the source domain. Firstly, domain adversarial network with an instance-based feature learning strategy is constructed to capture domain-invariant and class-discriminative features hidden in raw process data, thereby enhancing feature extraction and generalization abilities of fault diagnosis. Furthermore, a dual-stage reweighted induction module is designed to quantify the contribution of samples from both class-level and sample-level for selective adaptation. This module can automatically eliminate outlier fault categories in the source domain and facilitates alignment of feature distributions for shared fault categories. Comprehensive experiments conducted on the feedwater heater system of a 600-MW coal-fired generating unit demonstrate the outstanding performance of DWDAN.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.