Dual-frequency transmitter configuration for shallow surface electromagnetic detection

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Science and Technology Pub Date : 2023-12-19 DOI:10.1088/1361-6501/ad1742
Weiyu Liu, Shengbao Yu, Xinhao Zhang
{"title":"Dual-frequency transmitter configuration for shallow surface electromagnetic detection","authors":"Weiyu Liu, Shengbao Yu, Xinhao Zhang","doi":"10.1088/1361-6501/ad1742","DOIUrl":null,"url":null,"abstract":"\n In shallow surface electromagnetic detection, the square wave scheme is generally used in conventional transmission systems. Based on frequency-domain electromagnetic (FDEM) sounding theory, high-frequency measurement helps to improve vertical resolution. However, long grounded cable inductance produces severe reactive power suppression at high frequency transmission frequencies, which will reduce detection. To further improve detection accuracy and efficiency, a dual-frequency transmitter configuration is proposed in this article for shallow surface detection. The transmitter simultaneously powers two LC series resonant circuits for the detection of shallow and deep area. Dual-frequency control strategy is adopted, with both bridge arms being provided with constant switching frequency operation. According to the equivalent model of the transmission system, the control of the load branches is independent of each other. The LC series resonant circuit guarantees a wide passband to match long cable inductance that cannot be accurately estimated in advance. Simulations and experimental tests were carried out using this transmitter configuration and control technique. The simulation and experimental results are in general agreement, verifying the feasibility and effectiveness of the proposed dual-band transmitter configuration.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":" 17","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1742","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In shallow surface electromagnetic detection, the square wave scheme is generally used in conventional transmission systems. Based on frequency-domain electromagnetic (FDEM) sounding theory, high-frequency measurement helps to improve vertical resolution. However, long grounded cable inductance produces severe reactive power suppression at high frequency transmission frequencies, which will reduce detection. To further improve detection accuracy and efficiency, a dual-frequency transmitter configuration is proposed in this article for shallow surface detection. The transmitter simultaneously powers two LC series resonant circuits for the detection of shallow and deep area. Dual-frequency control strategy is adopted, with both bridge arms being provided with constant switching frequency operation. According to the equivalent model of the transmission system, the control of the load branches is independent of each other. The LC series resonant circuit guarantees a wide passband to match long cable inductance that cannot be accurately estimated in advance. Simulations and experimental tests were carried out using this transmitter configuration and control technique. The simulation and experimental results are in general agreement, verifying the feasibility and effectiveness of the proposed dual-band transmitter configuration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于浅表电磁探测的双频发射器配置
在浅表电磁探测中,传统传输系统一般采用方波方案。基于频域电磁(FDEM)探测理论,高频测量有助于提高垂直分辨率。然而,长接地电缆电感在高频传输频率下会产生严重的无功功率抑制,从而降低探测效果。为了进一步提高探测精度和效率,本文提出了一种用于浅表探测的双频发射器配置。发射器同时为两个 LC 串联谐振电路供电,用于探测浅层和深层区域。采用双频控制策略,两个桥臂均为恒定开关频率工作。根据传输系统的等效模型,负载分支的控制是相互独立的。LC 串联谐振电路保证了较宽的通带,以匹配事先无法准确估计的长电缆电感。利用这种发射机配置和控制技术进行了模拟和实验测试。仿真和实验结果基本一致,验证了所提出的双频发射机配置的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
期刊最新文献
Role of extrinsic factors on magnetoelastic resonance biosensors sensitivity Improved performance of BDS-3 time and frequency transfer based on an epoch differenced model with receiver clock estimation Development of Experimental Device for Inductive Heating of Magnetic Nanoparticles Weakly supervised medical image registration with multi-information guidance A soft sensor model based on an improved semi-supervised stacked autoencoder for just-in-time updating of cement clinker production process data f-CaO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1