Guangyi Zhu, Xi Zeng, Zheng Gong, Zhuohan Gao, Renquan Ji, Yisen Zeng, Pei Wang, Congda Lu
{"title":"Monitoring robot machine tool sate via neural ODE and BP-GA","authors":"Guangyi Zhu, Xi Zeng, Zheng Gong, Zhuohan Gao, Renquan Ji, Yisen Zeng, Pei Wang, Congda Lu","doi":"10.1088/1361-6501/ad166d","DOIUrl":null,"url":null,"abstract":"Tool wear during robotic polishing affects material removal rates and surface roughness, leading to erratic and inconsistent polishing quality. Therefore, a method that can predict the tool state is needed to replace the robot end tool in time. In this paper, based on the cutting-edge neural ordinary differential equations (Neural ODE) and BP neural network optimization based on genetic algorithm (BP-GA), we propose a method to identify the tool state during robotic machining: firstly, a new training method of Neural ODE is proposed to avoid the model from falling into poor stationary points, and then on this basis, Neural ODE is utilized to predict the changes of vibration signals during robot machining; secondly, the predicted vibration signals of the tool are processed using variable modal decomposition method to extract the eigen kurtosis index and envelope entropy of the modal function as the vibration signal eigenvectors, and compare them with the traditional vibration signal eigenvectors. Finally, the predicted tool states were identified using BP-GA, and numerical experiments yielded an F1 score of 91.76% and an accuracy of 96.55% for model identification.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"4 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad166d","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tool wear during robotic polishing affects material removal rates and surface roughness, leading to erratic and inconsistent polishing quality. Therefore, a method that can predict the tool state is needed to replace the robot end tool in time. In this paper, based on the cutting-edge neural ordinary differential equations (Neural ODE) and BP neural network optimization based on genetic algorithm (BP-GA), we propose a method to identify the tool state during robotic machining: firstly, a new training method of Neural ODE is proposed to avoid the model from falling into poor stationary points, and then on this basis, Neural ODE is utilized to predict the changes of vibration signals during robot machining; secondly, the predicted vibration signals of the tool are processed using variable modal decomposition method to extract the eigen kurtosis index and envelope entropy of the modal function as the vibration signal eigenvectors, and compare them with the traditional vibration signal eigenvectors. Finally, the predicted tool states were identified using BP-GA, and numerical experiments yielded an F1 score of 91.76% and an accuracy of 96.55% for model identification.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.