J. M. Adeke, Guangjie Liu, Junjie Zhao, Nannan Wu, Hafsat Muhammad Bashir
{"title":"Securing Network Traffic Classification Models against Adversarial Examples Using Derived Variables","authors":"J. M. Adeke, Guangjie Liu, Junjie Zhao, Nannan Wu, Hafsat Muhammad Bashir","doi":"10.3390/fi15120405","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) models are essential to securing communication networks. However, these models are vulnerable to adversarial examples (AEs), in which malicious inputs are modified by adversaries to produce the desired output. Adversarial training is an effective defense method against such attacks but relies on access to a substantial number of AEs, a prerequisite that entails significant computational resources and the inherent limitation of poor performance on clean data. To address these problems, this study proposes a novel approach to improve the robustness of ML-based network traffic classification models by integrating derived variables (DVars) into training. Unlike adversarial training, our approach focuses on enhancing training using DVars, introducing randomness into the input data. DVars are generated from the baseline dataset and significantly improve the resilience of the model to AEs. To evaluate the effectiveness of DVars, experiments were conducted using the CSE-CIC-IDS2018 dataset and three state-of-the-art ML-based models: decision tree (DT), random forest (RF), and k-neighbors (KNN). The results show that DVars can improve the accuracy of KNN under attack from 0.45% to 0.84% for low-intensity attacks and from 0.32% to 0.66% for high-intensity attacks. Furthermore, both DT and RF achieve a significant increase in accuracy when subjected to attack of different intensity. Moreover, DVars are computationally efficient, scalable, and do not require access to AEs.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"21 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) models are essential to securing communication networks. However, these models are vulnerable to adversarial examples (AEs), in which malicious inputs are modified by adversaries to produce the desired output. Adversarial training is an effective defense method against such attacks but relies on access to a substantial number of AEs, a prerequisite that entails significant computational resources and the inherent limitation of poor performance on clean data. To address these problems, this study proposes a novel approach to improve the robustness of ML-based network traffic classification models by integrating derived variables (DVars) into training. Unlike adversarial training, our approach focuses on enhancing training using DVars, introducing randomness into the input data. DVars are generated from the baseline dataset and significantly improve the resilience of the model to AEs. To evaluate the effectiveness of DVars, experiments were conducted using the CSE-CIC-IDS2018 dataset and three state-of-the-art ML-based models: decision tree (DT), random forest (RF), and k-neighbors (KNN). The results show that DVars can improve the accuracy of KNN under attack from 0.45% to 0.84% for low-intensity attacks and from 0.32% to 0.66% for high-intensity attacks. Furthermore, both DT and RF achieve a significant increase in accuracy when subjected to attack of different intensity. Moreover, DVars are computationally efficient, scalable, and do not require access to AEs.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.