{"title":"A robust simulator of pressure-dependent consumption in Python","authors":"Camille Chambon, O. Piller, I. Mortazavi","doi":"10.2166/hydro.2023.218","DOIUrl":null,"url":null,"abstract":"\n \n Modeling of pressure-dependent users’ consumption is mandatory to simulate accurately the hydraulics of water distribution networks (WDNs). Several software solutions already exist for this purpose, but none of them actually permits the easy integration and test of new physical processes. In this paper, we propose a new Python simulator that implements a state-of-the-art pressure-dependent model (PDM) of users’ consumptions based on the Wagner’s pressure–outflow relationship (POR). We tested our simulator on eight large and complex WDNs, for different levels of users’ demands. The results show similar precision and efficiency as the ones obtained by the authors of the original model with their MATLAB implementation. Moreover, in case of fully satisfied users’ demands, our simulator provides same results as EPANET 2.0 in comparable computational times. Finally, our simulator is integrated into the open-source, collaborative, multi-platform, and Git versioned Python framework OOPNET (Object-Oriented Python framework for water distribution NETworks analyses); thus, it can be easily reused and/or extended by a large community of WDN modelers. All this work represents a preliminary step before the incorporation of new processes such as valves, pumps, and pressure-dependent background leakage outflows.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.218","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling of pressure-dependent users’ consumption is mandatory to simulate accurately the hydraulics of water distribution networks (WDNs). Several software solutions already exist for this purpose, but none of them actually permits the easy integration and test of new physical processes. In this paper, we propose a new Python simulator that implements a state-of-the-art pressure-dependent model (PDM) of users’ consumptions based on the Wagner’s pressure–outflow relationship (POR). We tested our simulator on eight large and complex WDNs, for different levels of users’ demands. The results show similar precision and efficiency as the ones obtained by the authors of the original model with their MATLAB implementation. Moreover, in case of fully satisfied users’ demands, our simulator provides same results as EPANET 2.0 in comparable computational times. Finally, our simulator is integrated into the open-source, collaborative, multi-platform, and Git versioned Python framework OOPNET (Object-Oriented Python framework for water distribution NETworks analyses); thus, it can be easily reused and/or extended by a large community of WDN modelers. All this work represents a preliminary step before the incorporation of new processes such as valves, pumps, and pressure-dependent background leakage outflows.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.