Fuchen Ban, Chenjian Ye, Haipei Wang, Guozheng Li, Tongzhou Gao, Yu Wei, Ao Xiao
{"title":"Degradation of Rhodamine B by UV-Assisted Dynamic Diaphragm Electrocatalytic System: Efficiency Improvement and Mechanism Study","authors":"Fuchen Ban, Chenjian Ye, Haipei Wang, Guozheng Li, Tongzhou Gao, Yu Wei, Ao Xiao","doi":"10.1007/s12678-023-00862-7","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of water shortage is becoming increasingly serious. Looking for efficient and environmentally friendly water treatment technology has become the focus of today’s municipal engineering field. The ultraviolet-assisted electrocatalytic system is considered to be a new and efficient process. In this study, ultraviolet radiation was introduced into the self-made double-chamber dynamic diaphragm system electrolytic cell, and the synergistic effect of electrocatalytic reaction and ultraviolet radiation was used to achieve efficient degradation of rhodamine B. The effects of initial concentration, electrolytic voltage, and electrolyte concentration on the degradation efficiency were further studied. The optimal conditions were established by statistical methods such as the response surface method. After 60 min, the decolorization rate of rhodamine B in the positive and negative chambers of the electrolytic cell reached more than 98%. In addition, the intermediate products in the degradation process were analyzed by LC-MS to explore the degradation mechanism of rhodamine B. The experimental results show that the UV-assisted electrocatalytic membrane system process has potential in the field of water treatment and provides a new and efficient treatment scheme for solving the problem of water shortage.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 1","pages":"128 - 142"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00862-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of water shortage is becoming increasingly serious. Looking for efficient and environmentally friendly water treatment technology has become the focus of today’s municipal engineering field. The ultraviolet-assisted electrocatalytic system is considered to be a new and efficient process. In this study, ultraviolet radiation was introduced into the self-made double-chamber dynamic diaphragm system electrolytic cell, and the synergistic effect of electrocatalytic reaction and ultraviolet radiation was used to achieve efficient degradation of rhodamine B. The effects of initial concentration, electrolytic voltage, and electrolyte concentration on the degradation efficiency were further studied. The optimal conditions were established by statistical methods such as the response surface method. After 60 min, the decolorization rate of rhodamine B in the positive and negative chambers of the electrolytic cell reached more than 98%. In addition, the intermediate products in the degradation process were analyzed by LC-MS to explore the degradation mechanism of rhodamine B. The experimental results show that the UV-assisted electrocatalytic membrane system process has potential in the field of water treatment and provides a new and efficient treatment scheme for solving the problem of water shortage.
水资源短缺问题日益严重。寻找高效、环保的水处理技术已成为当今市政工程领域的焦点。紫外线辅助电催化系统被认为是一种新型高效工艺。本研究在自制的双室动态隔膜系统电解槽中引入紫外辐射,利用电催化反应和紫外辐射的协同效应实现罗丹明 B 的高效降解。通过响应面法等统计方法确定了最佳条件。60 分钟后,罗丹明 B 在电解池正、负极室中的脱色率达到 98% 以上。实验结果表明,紫外光辅助电催化膜系统工艺在水处理领域具有潜力,为解决水资源短缺问题提供了一种新的高效处理方案。
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.