Jie Guo, Yuhao Fu, Weijia Zheng*, Mingyuan Xie, Yuchao Huang, Zeyu Miao, Ce Han, Wenxu Yin, Jiaqi Zhang, Xuyong Yang, Jianjun Tian and Xiaoyu Zhang*,
{"title":"Entropy-Driven Strongly Confined Low-Toxicity Pure-Red Perovskite Quantum Dots for Spectrally Stable Light-Emitting Diodes","authors":"Jie Guo, Yuhao Fu, Weijia Zheng*, Mingyuan Xie, Yuchao Huang, Zeyu Miao, Ce Han, Wenxu Yin, Jiaqi Zhang, Xuyong Yang, Jianjun Tian and Xiaoyu Zhang*, ","doi":"10.1021/acs.nanolett.3c04214","DOIUrl":null,"url":null,"abstract":"<p >Spectrally stable pure-red perovskite quantum dots (QDs) with low lead content are essential for high-definition displays but are difficult to synthesize due to QD self-purification. Here, we make use of entropy-driven quantum-confined pure-red perovskite QDs to fabricate light-emitting diodes (LEDs) that have low toxicity and are efficient and spectrum-stable. Based on experimental data and first-principles calculations, multiple element alloying results in a 60% reduction in lead content while improving QD entropy to promote crystal stability. Entropy-driven QDs exhibit photoluminescence with 100% quantum yields and single-exponential decay lifetimes without alteration of their morphology or crystal structure. The pure-red LEDs utilizing entropy-driven QDs have spectrally stable electroluminescence, achieving a brightness of 4932 cd/m<sup>2</sup>, a maximum external quantum efficiency of over 20%, and a 15-fold longer operational lifetime than the CsPbI<sub>3</sub> QD-based LEDs. These achievements demonstrate that entropy-driven QDs can mitigate local compositional heterogeneity and ion migration.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 1","pages":"417–423"},"PeriodicalIF":9.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04214","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spectrally stable pure-red perovskite quantum dots (QDs) with low lead content are essential for high-definition displays but are difficult to synthesize due to QD self-purification. Here, we make use of entropy-driven quantum-confined pure-red perovskite QDs to fabricate light-emitting diodes (LEDs) that have low toxicity and are efficient and spectrum-stable. Based on experimental data and first-principles calculations, multiple element alloying results in a 60% reduction in lead content while improving QD entropy to promote crystal stability. Entropy-driven QDs exhibit photoluminescence with 100% quantum yields and single-exponential decay lifetimes without alteration of their morphology or crystal structure. The pure-red LEDs utilizing entropy-driven QDs have spectrally stable electroluminescence, achieving a brightness of 4932 cd/m2, a maximum external quantum efficiency of over 20%, and a 15-fold longer operational lifetime than the CsPbI3 QD-based LEDs. These achievements demonstrate that entropy-driven QDs can mitigate local compositional heterogeneity and ion migration.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.