You Chen, Zijing Quan, Haoran Xie, Bo Li, Jie Zhao, Shichao Niu, Zhiwu Han, Luquan Ren
{"title":"Bioinspired Active Dynamic Dust Remover for Multiscale Stardust Repelling of Unmanned Probe Surface","authors":"You Chen, Zijing Quan, Haoran Xie, Bo Li, Jie Zhao, Shichao Niu, Zhiwu Han, Luquan Ren","doi":"10.1021/acs.nanolett.4c05480","DOIUrl":null,"url":null,"abstract":"Unmanned probes, mainly powered by solar panels, are effective tools for exploiting space resources to expand the human habitat. However, it remains a great challenge for the unmanned probes to actively repel multiscale dust particles in space. Inspired by the synergistic antifouling mechanism of fly wings and legs, a biomimetic dynamic antifouling surface (BDAS) was prepared based on a combination of self-assembly and template inversion. BDAS consists of flexible and controllable cilia with ultrahigh aspect ratio. Under the control of an external magnetic field, BDAS can perform three modes of dust removal tasks. The synergism of these three modes ensures that BDAS provides superior dust removal against multiscale dust particles in complex environments. Compared to conventional passive dust removal surfaces, the dust removal efficiency is increased by 941%. As proof of concept, BDAS was installed on a lunar probe and achieved effective removal of simulated lunar soil (up to 1158%).","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"31 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05480","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned probes, mainly powered by solar panels, are effective tools for exploiting space resources to expand the human habitat. However, it remains a great challenge for the unmanned probes to actively repel multiscale dust particles in space. Inspired by the synergistic antifouling mechanism of fly wings and legs, a biomimetic dynamic antifouling surface (BDAS) was prepared based on a combination of self-assembly and template inversion. BDAS consists of flexible and controllable cilia with ultrahigh aspect ratio. Under the control of an external magnetic field, BDAS can perform three modes of dust removal tasks. The synergism of these three modes ensures that BDAS provides superior dust removal against multiscale dust particles in complex environments. Compared to conventional passive dust removal surfaces, the dust removal efficiency is increased by 941%. As proof of concept, BDAS was installed on a lunar probe and achieved effective removal of simulated lunar soil (up to 1158%).
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.