BEOL Three-Dimensional Stackable Oxide Semiconductor CMOS Inverter with a High Voltage Gain of 233 at Cryogenic Temperatures

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-12-20 DOI:10.1021/acs.nanolett.4c04701
Yiyuan Sun, Ying Xu, Zijie Zheng, Yuxuan Wang, Yuye Kang, Kaizhen Han, Wei Shi, Jinyong Wang, Xiao Gong
{"title":"BEOL Three-Dimensional Stackable Oxide Semiconductor CMOS Inverter with a High Voltage Gain of 233 at Cryogenic Temperatures","authors":"Yiyuan Sun, Ying Xu, Zijie Zheng, Yuxuan Wang, Yuye Kang, Kaizhen Han, Wei Shi, Jinyong Wang, Xiao Gong","doi":"10.1021/acs.nanolett.4c04701","DOIUrl":null,"url":null,"abstract":"Targeting high-performance computing at cryogenic temperatures, we report back-end-of-line (BEOL)-compatible p-type Te-TeO<sub><i>x</i></sub> field effect transistors (FETs) deposited using a sputtering method that is cost-effective, large-scale manufacturable, and highly controllable. Combined with the indium tin oxide channel n-FETs employing a common gate and HfO<sub>2</sub> gate dielectric, BEOL three-dimensional stackable oxide semiconductor complementary metal oxide semiconductor (CMOS) inverters were further realized, demonstrating excellent threshold voltage matching, with a high voltage gain of 132 with a 2 V supply voltage (<i>V</i><sub>DD</sub>) at room temperature. At cryogenic temperatures, the CMOS inverter exhibits significantly enhanced performance, achieving a voltage gain of 233 at a <i>V</i><sub>DD</sub> of 2 V with a wide noise margin of 86%. Even at an ultralow <i>V</i><sub>DD</sub> of 0.5 V, the CMOS inverter maintains solid performance with an exceptionally low power consumption of &lt;60 pW.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"56 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04701","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Targeting high-performance computing at cryogenic temperatures, we report back-end-of-line (BEOL)-compatible p-type Te-TeOx field effect transistors (FETs) deposited using a sputtering method that is cost-effective, large-scale manufacturable, and highly controllable. Combined with the indium tin oxide channel n-FETs employing a common gate and HfO2 gate dielectric, BEOL three-dimensional stackable oxide semiconductor complementary metal oxide semiconductor (CMOS) inverters were further realized, demonstrating excellent threshold voltage matching, with a high voltage gain of 132 with a 2 V supply voltage (VDD) at room temperature. At cryogenic temperatures, the CMOS inverter exhibits significantly enhanced performance, achieving a voltage gain of 233 at a VDD of 2 V with a wide noise margin of 86%. Even at an ultralow VDD of 0.5 V, the CMOS inverter maintains solid performance with an exceptionally low power consumption of <60 pW.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Tunable Topological Transitions Probed by the Quantum Hall Effect in Twisted Double Bilayer Graphene BEOL Three-Dimensional Stackable Oxide Semiconductor CMOS Inverter with a High Voltage Gain of 233 at Cryogenic Temperatures Three-Dimensional Visualization of Chiral Nano-Optical Field around Gold Nanoplates via Scanning Near-Field Optical Microscopy Breaking the Spin-Forbidden Restriction to Achieve Long Lifetime Room-Temperature Phosphorescence of Carbon Dots Bioinspired Active Dynamic Dust Remover for Multiscale Stardust Repelling of Unmanned Probe Surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1