Adam Booker , Victoria Chiu , Nathan Groff , Vernon J. Richardson
{"title":"AIS research opportunities utilizing Machine Learning: From a Meta-Theory of accounting literature","authors":"Adam Booker , Victoria Chiu , Nathan Groff , Vernon J. Richardson","doi":"10.1016/j.accinf.2023.100661","DOIUrl":null,"url":null,"abstract":"<div><p>We use Accounting Information Systems (AIS) <em>meta</em>-theory to develop a framework for analyzing and using machine learning in accounting research, emphasizing 1) specific accounting research tasks, 2) supervised and unsupervised models, and 3) inductive vs. deductive research designs. We apply our framework to organize AIS and accounting research and highlight opportunities for future AIS research using machine learning. We discuss the changes in technology that have made machine learning more feasible in practice and research and how these changes might motivate and influence future research projects. We conclude by providing directions for future work in machine learning in AIS research and discussing the potential application to practice.</p></div>","PeriodicalId":47170,"journal":{"name":"International Journal of Accounting Information Systems","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Accounting Information Systems","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1467089523000532","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
We use Accounting Information Systems (AIS) meta-theory to develop a framework for analyzing and using machine learning in accounting research, emphasizing 1) specific accounting research tasks, 2) supervised and unsupervised models, and 3) inductive vs. deductive research designs. We apply our framework to organize AIS and accounting research and highlight opportunities for future AIS research using machine learning. We discuss the changes in technology that have made machine learning more feasible in practice and research and how these changes might motivate and influence future research projects. We conclude by providing directions for future work in machine learning in AIS research and discussing the potential application to practice.
期刊介绍:
The International Journal of Accounting Information Systems will publish thoughtful, well developed articles that examine the rapidly evolving relationship between accounting and information technology. Articles may range from empirical to analytical, from practice-based to the development of new techniques, but must be related to problems facing the integration of accounting and information technology. The journal will address (but will not limit itself to) the following specific issues: control and auditability of information systems; management of information technology; artificial intelligence research in accounting; development issues in accounting and information systems; human factors issues related to information technology; development of theories related to information technology; methodological issues in information technology research; information systems validation; human–computer interaction research in accounting information systems. The journal welcomes and encourages articles from both practitioners and academicians.