Discrete-Time Mean-Variance Strategy Based on Reinforcement Learning

Xiangyu Cui, Xun Li, Yun Shi, Si Zhao
{"title":"Discrete-Time Mean-Variance Strategy Based on Reinforcement Learning","authors":"Xiangyu Cui, Xun Li, Yun Shi, Si Zhao","doi":"arxiv-2312.15385","DOIUrl":null,"url":null,"abstract":"This paper studies a discrete-time mean-variance model based on reinforcement\nlearning. Compared with its continuous-time counterpart in \\cite{zhou2020mv},\nthe discrete-time model makes more general assumptions about the asset's return\ndistribution. Using entropy to measure the cost of exploration, we derive the\noptimal investment strategy, whose density function is also Gaussian type.\nAdditionally, we design the corresponding reinforcement learning algorithm.\nBoth simulation experiments and empirical analysis indicate that our\ndiscrete-time model exhibits better applicability when analyzing real-world\ndata than the continuous-time model.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.15385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a discrete-time mean-variance model based on reinforcement learning. Compared with its continuous-time counterpart in \cite{zhou2020mv}, the discrete-time model makes more general assumptions about the asset's return distribution. Using entropy to measure the cost of exploration, we derive the optimal investment strategy, whose density function is also Gaussian type. Additionally, we design the corresponding reinforcement learning algorithm. Both simulation experiments and empirical analysis indicate that our discrete-time model exhibits better applicability when analyzing real-world data than the continuous-time model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的离散时间均值-方差策略
本文研究了基于强化学习的离散时间均值-方差模型。与连续时间模型相比,离散时间模型对资产的收益分配做了更一般的假设。此外,我们还设计了相应的强化学习算法。仿真实验和实证分析表明,与连续时间模型相比,离散时间模型在分析现实数据时具有更好的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Investment with Costly Expert Opinions Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization Disentangling the sources of cyber risk premia A Deep Reinforcement Learning Framework For Financial Portfolio Management Betting Against (Bad) Beta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1