Disentangling the sources of cyber risk premia

Loïc Maréchal, Nathan Monnet
{"title":"Disentangling the sources of cyber risk premia","authors":"Loïc Maréchal, Nathan Monnet","doi":"arxiv-2409.08728","DOIUrl":null,"url":null,"abstract":"We use a methodology based on a machine learning algorithm to quantify firms'\ncyber risks based on their disclosures and a dedicated cyber corpus. The model\ncan identify paragraphs related to determined cyber-threat types and\naccordingly attribute several related cyber scores to the firm. The cyber\nscores are unrelated to other firms' characteristics. Stocks with high cyber\nscores significantly outperform other stocks. The long-short cyber risk factors\nhave positive risk premia, are robust to all factors' benchmarks, and help\nprice returns. Furthermore, we suggest the market does not distinguish between\ndifferent types of cyber risks but instead views them as a single, aggregate\ncyber risk.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"215 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use a methodology based on a machine learning algorithm to quantify firms' cyber risks based on their disclosures and a dedicated cyber corpus. The model can identify paragraphs related to determined cyber-threat types and accordingly attribute several related cyber scores to the firm. The cyber scores are unrelated to other firms' characteristics. Stocks with high cyber scores significantly outperform other stocks. The long-short cyber risk factors have positive risk premia, are robust to all factors' benchmarks, and help price returns. Furthermore, we suggest the market does not distinguish between different types of cyber risks but instead views them as a single, aggregate cyber risk.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
厘清网络风险溢价的来源
我们使用一种基于机器学习算法的方法,根据企业披露的信息和专门的网络语料库来量化企业的网络风险。该模型可识别与确定的网络威胁类型相关的段落,并据此为公司赋予若干相关的网络分数。网络分数与公司的其他特征无关。网络分数高的股票表现明显优于其他股票。多空网络风险因子具有正风险溢价,对所有因子的基准都是稳健的,并且有助于提高回报率。此外,我们认为市场并未区分不同类型的网络风险,而是将其视为单一的、综合的网络风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Investment with Costly Expert Opinions Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization Disentangling the sources of cyber risk premia A Deep Reinforcement Learning Framework For Financial Portfolio Management Betting Against (Bad) Beta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1