Optimal Investment with Costly Expert Opinions

Christoph Knochenhauer, Alexander Merkel, Yufei Zhang
{"title":"Optimal Investment with Costly Expert Opinions","authors":"Christoph Knochenhauer, Alexander Merkel, Yufei Zhang","doi":"arxiv-2409.11569","DOIUrl":null,"url":null,"abstract":"We consider the Merton problem of optimizing expected power utility of\nterminal wealth in the case of an unobservable Markov-modulated drift. What\nmakes the model special is that the agent is allowed to purchase costly expert\nopinions of varying quality on the current state of the drift, leading to a\nmixed stochastic control problem with regular and impulse controls involving\nrandom consequences. Using ideas from filtering theory, we first embed the\noriginal problem with unobservable drift into a full information problem on a\nlarger state space. The value function of the full information problem is\ncharacterized as the unique viscosity solution of the dynamic programming PDE.\nThis characterization is achieved by a new variant of the stochastic Perron's\nmethod, which additionally allows us to show that, in between purchases of\nexpert opinions, the problem reduces to an exit time control problem which is\nknown to admit an optimal feedback control. Under the assumption of sufficient\nregularity of this feedback map, we are able to construct optimal trading and\nexpert opinion strategies.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Merton problem of optimizing expected power utility of terminal wealth in the case of an unobservable Markov-modulated drift. What makes the model special is that the agent is allowed to purchase costly expert opinions of varying quality on the current state of the drift, leading to a mixed stochastic control problem with regular and impulse controls involving random consequences. Using ideas from filtering theory, we first embed the original problem with unobservable drift into a full information problem on a larger state space. The value function of the full information problem is characterized as the unique viscosity solution of the dynamic programming PDE. This characterization is achieved by a new variant of the stochastic Perron's method, which additionally allows us to show that, in between purchases of expert opinions, the problem reduces to an exit time control problem which is known to admit an optimal feedback control. Under the assumption of sufficient regularity of this feedback map, we are able to construct optimal trading and expert opinion strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用昂贵的专家意见优化投资
我们考虑的是在不可观测的马尔可夫调制漂移情况下优化初始财富的预期功率效用的默顿问题。这个模型的特殊之处在于,我们允许代理人就漂移的当前状态购买不同质量的昂贵专家意见,这就导致了一个混合的随机控制问题,其中有涉及随机后果的常规控制和脉冲控制。利用过滤理论的思想,我们首先将不可观测漂移的原始问题嵌入到更大状态空间上的全信息问题中。全信息问题的值函数被表征为动态编程 PDE 的唯一粘性解。这种表征是通过随机 Perron 方法的新变体实现的,它还允许我们证明,在购买专家意见之间,该问题简化为退出时间控制问题,已知该问题允许一个最优反馈控制。在该反馈图充分规则性的假设下,我们能够构建最优交易策略和专家意见策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Investment with Costly Expert Opinions Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization Disentangling the sources of cyber risk premia A Deep Reinforcement Learning Framework For Financial Portfolio Management Betting Against (Bad) Beta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1