Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization

Junhyeong Lee, Inwoo Tae, Yongjae Lee
{"title":"Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization","authors":"Junhyeong Lee, Inwoo Tae, Yongjae Lee","doi":"arxiv-2409.09684","DOIUrl":null,"url":null,"abstract":"Markowitz laid the foundation of portfolio theory through the mean-variance\noptimization (MVO) framework. However, the effectiveness of MVO is contingent\non the precise estimation of expected returns, variances, and covariances of\nasset returns, which are typically uncertain. Machine learning models are\nbecoming useful in estimating uncertain parameters, and such models are trained\nto minimize prediction errors, such as mean squared errors (MSE), which treat\nprediction errors uniformly across assets. Recent studies have pointed out that\nthis approach would lead to suboptimal decisions and proposed Decision-Focused\nLearning (DFL) as a solution, integrating prediction and optimization to\nimprove decision-making outcomes. While studies have shown DFL's potential to\nenhance portfolio performance, the detailed mechanisms of how DFL modifies\nprediction models for MVO remain unexplored. This study aims to investigate how\nDFL adjusts stock return prediction models to optimize decisions in MVO,\naddressing the question: \"MSE treats the errors of all assets equally, but how\ndoes DFL reduce errors of different assets differently?\" Answering this will\nprovide crucial insights into optimal stock return prediction for constructing\nefficient portfolios.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Markowitz laid the foundation of portfolio theory through the mean-variance optimization (MVO) framework. However, the effectiveness of MVO is contingent on the precise estimation of expected returns, variances, and covariances of asset returns, which are typically uncertain. Machine learning models are becoming useful in estimating uncertain parameters, and such models are trained to minimize prediction errors, such as mean squared errors (MSE), which treat prediction errors uniformly across assets. Recent studies have pointed out that this approach would lead to suboptimal decisions and proposed Decision-Focused Learning (DFL) as a solution, integrating prediction and optimization to improve decision-making outcomes. While studies have shown DFL's potential to enhance portfolio performance, the detailed mechanisms of how DFL modifies prediction models for MVO remain unexplored. This study aims to investigate how DFL adjusts stock return prediction models to optimize decisions in MVO, addressing the question: "MSE treats the errors of all assets equally, but how does DFL reduce errors of different assets differently?" Answering this will provide crucial insights into optimal stock return prediction for constructing efficient portfolios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马科维茨的机器解剖学:均值-方差投资组合优化的决策学习
马科维茨通过均值-方差优化(MVO)框架奠定了投资组合理论的基础。然而,MVO 的有效性取决于对资产收益的预期收益、方差和协方差的精确估计,而这些参数通常是不确定的。机器学习模型在估计不确定参数方面越来越有用,此类模型经过训练后可最大限度地减少预测误差,如均值平方误差(MSE),该模型对各种资产的预测误差进行统一处理。最近的研究指出,这种方法会导致次优决策,并提出以决策为中心的学习(DFL)作为解决方案,将预测和优化结合起来,以改善决策结果。虽然研究表明 DFL 具有提高投资组合绩效的潜力,但 DFL 如何修改 MVO 预测模型的详细机制仍有待探索。本研究旨在探讨 DFL 如何调整股票回报预测模型,以优化 MVO 决策,并解决以下问题:"MSE 对所有资产的误差一视同仁,但 DFL 是如何以不同方式减少不同资产的误差的?回答这个问题将为构建高效投资组合的最优股票收益预测提供重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Investment with Costly Expert Opinions Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization Disentangling the sources of cyber risk premia A Deep Reinforcement Learning Framework For Financial Portfolio Management Betting Against (Bad) Beta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1