Sector Rotation by Factor Model and Fundamental Analysis

Runjia Yang, Beining Shi
{"title":"Sector Rotation by Factor Model and Fundamental Analysis","authors":"Runjia Yang, Beining Shi","doi":"arxiv-2401.00001","DOIUrl":null,"url":null,"abstract":"This study presents an analytical approach to sector rotation, leveraging\nboth factor models and fundamental metrics. We initiate with a systematic\nclassification of sectors, followed by an empirical investigation into their\nreturns. Through factor analysis, the paper underscores the significance of\nmomentum and short-term reversion in dictating sectoral shifts. A subsequent\nin-depth fundamental analysis evaluates metrics such as PE, PB, EV-to-EBITDA,\nDividend Yield, among others. Our primary contribution lies in developing a\npredictive framework based on these fundamental indicators. The constructed\nmodels, post rigorous training, exhibit noteworthy predictive capabilities. The\nfindings furnish a nuanced understanding of sector rotation strategies, with\nimplications for asset management and portfolio construction in the financial\ndomain.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"244 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an analytical approach to sector rotation, leveraging both factor models and fundamental metrics. We initiate with a systematic classification of sectors, followed by an empirical investigation into their returns. Through factor analysis, the paper underscores the significance of momentum and short-term reversion in dictating sectoral shifts. A subsequent in-depth fundamental analysis evaluates metrics such as PE, PB, EV-to-EBITDA, Dividend Yield, among others. Our primary contribution lies in developing a predictive framework based on these fundamental indicators. The constructed models, post rigorous training, exhibit noteworthy predictive capabilities. The findings furnish a nuanced understanding of sector rotation strategies, with implications for asset management and portfolio construction in the financial domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过因子模型和基本面分析进行行业轮换
本研究利用因子模型和基本指标,提出了一种行业轮动的分析方法。我们首先对行业进行了系统分类,然后对其回报率进行了实证调查。通过因子分析,本文强调了动量和短期回归在决定板块轮动中的重要性。随后的深入基本面分析评估了 PE、PB、EV-to-EBITDA、股息率等指标。我们的主要贡献在于基于这些基本指标开发了一个预测框架。所构建的模型经过严格训练后,表现出了值得关注的预测能力。这些发现为行业轮动策略提供了细致入微的理解,并对金融领域的资产管理和投资组合构建产生了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Investment with Costly Expert Opinions Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization Disentangling the sources of cyber risk premia A Deep Reinforcement Learning Framework For Financial Portfolio Management Betting Against (Bad) Beta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1