Hanyu Zheng, Quan Liu, Ivan I. Kravchenko, Xiaomeng Zhang, Yuankai Huo, Jason G. Valentine
{"title":"Multichannel meta-imagers for accelerating machine vision","authors":"Hanyu Zheng, Quan Liu, Ivan I. Kravchenko, Xiaomeng Zhang, Yuankai Huo, Jason G. Valentine","doi":"10.1038/s41565-023-01557-2","DOIUrl":null,"url":null,"abstract":"Rapid developments in machine vision technology have impacted a variety of applications, such as medical devices and autonomous driving systems. These achievements, however, typically necessitate digital neural networks with the downside of heavy computational requirements and consequent high energy consumption. As a result, real-time decision-making is hindered when computational resources are not readily accessible. Here we report a meta-imager designed to work together with a digital back end to offload computationally expensive convolution operations into high-speed, low-power optics. In this architecture, metasurfaces enable both angle and polarization multiplexing to create multiple information channels that perform positively and negatively valued convolution operations in a single shot. We use our meta-imager for object classification, achieving 98.6% accuracy in handwritten digits and 88.8% accuracy in fashion images. Owing to its compactness, high speed and low power consumption, our approach could find a wide range of applications in artificial intelligence and machine vision applications. A metasurface-based approach is used to implement computationally expensive digital convolution operations in high-speed, low-power optics for improving the latency and power consumption of machine vision systems.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 4","pages":"471-478"},"PeriodicalIF":38.1000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-023-01557-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid developments in machine vision technology have impacted a variety of applications, such as medical devices and autonomous driving systems. These achievements, however, typically necessitate digital neural networks with the downside of heavy computational requirements and consequent high energy consumption. As a result, real-time decision-making is hindered when computational resources are not readily accessible. Here we report a meta-imager designed to work together with a digital back end to offload computationally expensive convolution operations into high-speed, low-power optics. In this architecture, metasurfaces enable both angle and polarization multiplexing to create multiple information channels that perform positively and negatively valued convolution operations in a single shot. We use our meta-imager for object classification, achieving 98.6% accuracy in handwritten digits and 88.8% accuracy in fashion images. Owing to its compactness, high speed and low power consumption, our approach could find a wide range of applications in artificial intelligence and machine vision applications. A metasurface-based approach is used to implement computationally expensive digital convolution operations in high-speed, low-power optics for improving the latency and power consumption of machine vision systems.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.