Anirudh Sivakumar, Hathaichanok Phuengkham, Hitha Rajesh, Quoc D. Mac, Leonard C. Rogers, Aaron D. Silva Trenkle, Swapnil Subhash Bawage, Robert Hincapie, Zhonghan Li, Sofia Vainikos, Inho Lee, Min Xue, Peng Qiu, M. G. Finn, Gabriel A. Kwong
{"title":"AND-gated protease-activated nanosensors for programmable detection of anti-tumour immunity","authors":"Anirudh Sivakumar, Hathaichanok Phuengkham, Hitha Rajesh, Quoc D. Mac, Leonard C. Rogers, Aaron D. Silva Trenkle, Swapnil Subhash Bawage, Robert Hincapie, Zhonghan Li, Sofia Vainikos, Inho Lee, Min Xue, Peng Qiu, M. G. Finn, Gabriel A. Kwong","doi":"10.1038/s41565-024-01834-8","DOIUrl":null,"url":null,"abstract":"<p>The forward design of biosensors that implement Boolean logic to improve detection precision primarily relies on programming genetic components to control transcriptional responses. However, cell- and gene-free nanomaterials programmed with logical functions may present lower barriers for clinical translation. Here we report the design of activity-based nanosensors that implement AND-gate logic without genetic parts via bi-labile cyclic peptides. These actuate by releasing a reporter if and only if cleaved by a specific pair of proteases. AND-gated nanosensors that detect the concomitant activity of the granzyme B protease secreted by CD8 T cells and matrix metalloproteinases overexpressed by cancer cells identify the unique condition of cytotoxic T cell killing of tumour cells. In preclinical mouse models, AND-gated nanosensors discriminate tumours that are responsive to immune checkpoint blockade therapy from <i>B2m</i><sup>–/–</sup> tumours that are resistant to it, minimize signals from tissues without co-localized protease expression including the lungs during acute influenza infection, and release a reporter locally in tissue or distally in the urine for facile detection.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"70 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01834-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The forward design of biosensors that implement Boolean logic to improve detection precision primarily relies on programming genetic components to control transcriptional responses. However, cell- and gene-free nanomaterials programmed with logical functions may present lower barriers for clinical translation. Here we report the design of activity-based nanosensors that implement AND-gate logic without genetic parts via bi-labile cyclic peptides. These actuate by releasing a reporter if and only if cleaved by a specific pair of proteases. AND-gated nanosensors that detect the concomitant activity of the granzyme B protease secreted by CD8 T cells and matrix metalloproteinases overexpressed by cancer cells identify the unique condition of cytotoxic T cell killing of tumour cells. In preclinical mouse models, AND-gated nanosensors discriminate tumours that are responsive to immune checkpoint blockade therapy from B2m–/– tumours that are resistant to it, minimize signals from tissues without co-localized protease expression including the lungs during acute influenza infection, and release a reporter locally in tissue or distally in the urine for facile detection.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.