Jacopo Liberatori, Francesco Battista, Federico Dalla Barba, Pietro Paolo Ciottoli
{"title":"Direct Numerical Simulation of Vortex Breakdown in Evaporating Dilute Sprays","authors":"Jacopo Liberatori, Francesco Battista, Federico Dalla Barba, Pietro Paolo Ciottoli","doi":"10.1007/s10494-023-00521-3","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of different vortex breakdown states on the evaporation process characterizing air-acetone vapor swirling jets laden with liquid acetone droplets in the dilute regime are discussed based on results provided by direct numerical simulations. Adopting the point-droplet approximation, the carrier phase is solved using an Eulerian framework, whereas a Lagrangian tracking of the dispersed phase is used. Three test cases are investigated: one with fully-turbulent pipe inflow conditions and two with a laminar Maxworthy velocity profile at different swirl rates. Consequently, turbulent, bubble-type, and regular conical vortex breakdown states are established. Following phenomenological and statistical analyses of both phases, a significant enhancement of the overall droplet evaporation process due to the onset of the conical vortex breakdown is observed due to the strongest centrifugal forces driving the entire liquid drops towards the low-saturation mixing layer of the jet. The effects of droplet inertia on evaporation are isolated through an additional set of simulations where liquid droplets are treated as Lagrangian tracers. While it is found that inertial effects contribute to enhanced vaporization near the mixing layer under bubble vortex breakdown conditions, droplet inertia plays a secondary role under both turbulent and conical vortex breakdown due to intense turbulent mixing and high centrifugal forces, respectively.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"112 2","pages":"643 - 667"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-023-00521-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00521-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of different vortex breakdown states on the evaporation process characterizing air-acetone vapor swirling jets laden with liquid acetone droplets in the dilute regime are discussed based on results provided by direct numerical simulations. Adopting the point-droplet approximation, the carrier phase is solved using an Eulerian framework, whereas a Lagrangian tracking of the dispersed phase is used. Three test cases are investigated: one with fully-turbulent pipe inflow conditions and two with a laminar Maxworthy velocity profile at different swirl rates. Consequently, turbulent, bubble-type, and regular conical vortex breakdown states are established. Following phenomenological and statistical analyses of both phases, a significant enhancement of the overall droplet evaporation process due to the onset of the conical vortex breakdown is observed due to the strongest centrifugal forces driving the entire liquid drops towards the low-saturation mixing layer of the jet. The effects of droplet inertia on evaporation are isolated through an additional set of simulations where liquid droplets are treated as Lagrangian tracers. While it is found that inertial effects contribute to enhanced vaporization near the mixing layer under bubble vortex breakdown conditions, droplet inertia plays a secondary role under both turbulent and conical vortex breakdown due to intense turbulent mixing and high centrifugal forces, respectively.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.