Qingqing Chen, Teng Li, Yao Wang, Xiaolin Wei, Liang Zhang
{"title":"Numerical and Experimental Study on the Deflagration Characteristics of Premixed CO in a Tube with Obstacles","authors":"Qingqing Chen, Teng Li, Yao Wang, Xiaolin Wei, Liang Zhang","doi":"10.1007/s10494-024-00627-2","DOIUrl":null,"url":null,"abstract":"<div><p>As the main by-product of converter steelmaking process, converter gas has significant potential for energy recovery due to its high calorific value. However, there is a significant risk of explosion during the recycling process. In order to ensure the process safety of converter gas recovery and achieve efficient energy utilization, it is necessary to study the process of CO deflagration in the tube and prevent it. This article combines experiments and numerical simulations to study the effects of obstacles inside tube, water content in the air, and the length of the smooth section on CO deflagration characteristics. The results show that the propagation characteristics of flames in the smooth section are related to the flow field and have periodicity. The length of the smooth section does not significantly affect the maximum deflagration pressure. During the propagation of flames in the obstacle section, the acceleration effect of each obstacle on the flame is similar, and the deflagration becomes more and more intense as the number of obstacles increases. The peak value is reached at the last obstacle, about 0.72 MPa, and the flame speed can reach 672 m/s. The water content in the air has a significant impact on the maximum deflagration pressure of CO, as H<sub>2</sub>O triggers a series of chain branching reactions. When the water content increases to 0.39%, the maximum deflagration pressure reaches its peak. In terms of numerical simulation, the reliability of the open-source combustion solver XiFoam was verified. The combustion, transport, and thermodynamic property parameters for premixed gas of CO and humid air were provided using Cantera. Finally, in order to avoid the occurrence of deflagration during the converter gas recovery process, it is necessary to strictly control its moisture content.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 2","pages":"561 - 583"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00627-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
As the main by-product of converter steelmaking process, converter gas has significant potential for energy recovery due to its high calorific value. However, there is a significant risk of explosion during the recycling process. In order to ensure the process safety of converter gas recovery and achieve efficient energy utilization, it is necessary to study the process of CO deflagration in the tube and prevent it. This article combines experiments and numerical simulations to study the effects of obstacles inside tube, water content in the air, and the length of the smooth section on CO deflagration characteristics. The results show that the propagation characteristics of flames in the smooth section are related to the flow field and have periodicity. The length of the smooth section does not significantly affect the maximum deflagration pressure. During the propagation of flames in the obstacle section, the acceleration effect of each obstacle on the flame is similar, and the deflagration becomes more and more intense as the number of obstacles increases. The peak value is reached at the last obstacle, about 0.72 MPa, and the flame speed can reach 672 m/s. The water content in the air has a significant impact on the maximum deflagration pressure of CO, as H2O triggers a series of chain branching reactions. When the water content increases to 0.39%, the maximum deflagration pressure reaches its peak. In terms of numerical simulation, the reliability of the open-source combustion solver XiFoam was verified. The combustion, transport, and thermodynamic property parameters for premixed gas of CO and humid air were provided using Cantera. Finally, in order to avoid the occurrence of deflagration during the converter gas recovery process, it is necessary to strictly control its moisture content.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.