Numerical and Experimental Study on the Deflagration Characteristics of Premixed CO in a Tube with Obstacles

IF 2 3区 工程技术 Q3 MECHANICS Flow, Turbulence and Combustion Pub Date : 2024-12-17 DOI:10.1007/s10494-024-00627-2
Qingqing Chen, Teng Li, Yao Wang, Xiaolin Wei, Liang Zhang
{"title":"Numerical and Experimental Study on the Deflagration Characteristics of Premixed CO in a Tube with Obstacles","authors":"Qingqing Chen,&nbsp;Teng Li,&nbsp;Yao Wang,&nbsp;Xiaolin Wei,&nbsp;Liang Zhang","doi":"10.1007/s10494-024-00627-2","DOIUrl":null,"url":null,"abstract":"<div><p>As the main by-product of converter steelmaking process, converter gas has significant potential for energy recovery due to its high calorific value. However, there is a significant risk of explosion during the recycling process. In order to ensure the process safety of converter gas recovery and achieve efficient energy utilization, it is necessary to study the process of CO deflagration in the tube and prevent it. This article combines experiments and numerical simulations to study the effects of obstacles inside tube, water content in the air, and the length of the smooth section on CO deflagration characteristics. The results show that the propagation characteristics of flames in the smooth section are related to the flow field and have periodicity. The length of the smooth section does not significantly affect the maximum deflagration pressure. During the propagation of flames in the obstacle section, the acceleration effect of each obstacle on the flame is similar, and the deflagration becomes more and more intense as the number of obstacles increases. The peak value is reached at the last obstacle, about 0.72 MPa, and the flame speed can reach 672 m/s. The water content in the air has a significant impact on the maximum deflagration pressure of CO, as H<sub>2</sub>O triggers a series of chain branching reactions. When the water content increases to 0.39%, the maximum deflagration pressure reaches its peak. In terms of numerical simulation, the reliability of the open-source combustion solver XiFoam was verified. The combustion, transport, and thermodynamic property parameters for premixed gas of CO and humid air were provided using Cantera. Finally, in order to avoid the occurrence of deflagration during the converter gas recovery process, it is necessary to strictly control its moisture content.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 2","pages":"561 - 583"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00627-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

As the main by-product of converter steelmaking process, converter gas has significant potential for energy recovery due to its high calorific value. However, there is a significant risk of explosion during the recycling process. In order to ensure the process safety of converter gas recovery and achieve efficient energy utilization, it is necessary to study the process of CO deflagration in the tube and prevent it. This article combines experiments and numerical simulations to study the effects of obstacles inside tube, water content in the air, and the length of the smooth section on CO deflagration characteristics. The results show that the propagation characteristics of flames in the smooth section are related to the flow field and have periodicity. The length of the smooth section does not significantly affect the maximum deflagration pressure. During the propagation of flames in the obstacle section, the acceleration effect of each obstacle on the flame is similar, and the deflagration becomes more and more intense as the number of obstacles increases. The peak value is reached at the last obstacle, about 0.72 MPa, and the flame speed can reach 672 m/s. The water content in the air has a significant impact on the maximum deflagration pressure of CO, as H2O triggers a series of chain branching reactions. When the water content increases to 0.39%, the maximum deflagration pressure reaches its peak. In terms of numerical simulation, the reliability of the open-source combustion solver XiFoam was verified. The combustion, transport, and thermodynamic property parameters for premixed gas of CO and humid air were provided using Cantera. Finally, in order to avoid the occurrence of deflagration during the converter gas recovery process, it is necessary to strictly control its moisture content.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
期刊最新文献
Effects of Wall Temperature on Scalar and Turbulence Statistics During Premixed Flame–Wall Interaction Within Turbulent Boundary Layers Blowout and Blowoff Limits of Confined Coaxial Ammonia/Hydrogen/Nitrogen-Air Flames with Variable Ammonia Fraction Numerical and Experimental Study on the Deflagration Characteristics of Premixed CO in a Tube with Obstacles Relation Between 3 and 2D Wrinkling Factors in Turbulent Premixed Flames LES Prediction of the Ignition Probability Map for a Model Aeronautical Spray Burner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1