An Initial Perturbation Method for the Multiscale Singular Vector in Global Ensemble Prediction

IF 6.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Advances in Atmospheric Sciences Pub Date : 2024-01-05 DOI:10.1007/s00376-023-3035-4
Xin Liu, Jing Chen, Yongzhu Liu, Zhenhua Huo, Zhizhen Xu, Fajing Chen, Jing Wang, Yanan Ma, Yumeng Han
{"title":"An Initial Perturbation Method for the Multiscale Singular Vector in Global Ensemble Prediction","authors":"Xin Liu, Jing Chen, Yongzhu Liu, Zhenhua Huo, Zhizhen Xu, Fajing Chen, Jing Wang, Yanan Ma, Yumeng Han","doi":"10.1007/s00376-023-3035-4","DOIUrl":null,"url":null,"abstract":"<p>Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction (NWP) caused by errors in initial conditions (ICs). The traditional Singular Vector (SV) initial perturbation method tends only to capture synoptic scale initial uncertainty rather than mesoscale uncertainty in global ensemble prediction. To address this issue, a multiscale SV initial perturbation method based on the China Meteorological Administration Global Ensemble Prediction System (CMA-GEPS) is proposed to quantify multiscale initial uncertainty. The multiscale SV initial perturbation approach entails calculating multiscale SVs at different resolutions with multiple linearized physical processes to capture fast-growing perturbations from mesoscale to synoptic scale in target areas and combining these SVs by using a Gaussian sampling method with amplitude coefficients to generate initial perturbations. Following that, the energy norm, energy spectrum, and structure of multiscale SVs and their impact on GEPS are analyzed based on a batch experiment in different seasons. The results show that the multiscale SV initial perturbations can possess more energy and capture more mesoscale uncertainties than the traditional single-SV method. Meanwhile, multiscale SV initial perturbations can reflect the strongest dynamical instability in target areas. Their performances in global ensemble prediction when compared to single-scale SVs are shown to (i) improve the relationship between the ensemble spread and the root-mean-square error and (ii) provide a better probability forecast skill for atmospheric circulation during the late forecast period and for short- to medium-range precipitation. This study provides scientific evidence and application foundations for the design and development of a multiscale SV initial perturbation method for the GEPS.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"17 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-3035-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction (NWP) caused by errors in initial conditions (ICs). The traditional Singular Vector (SV) initial perturbation method tends only to capture synoptic scale initial uncertainty rather than mesoscale uncertainty in global ensemble prediction. To address this issue, a multiscale SV initial perturbation method based on the China Meteorological Administration Global Ensemble Prediction System (CMA-GEPS) is proposed to quantify multiscale initial uncertainty. The multiscale SV initial perturbation approach entails calculating multiscale SVs at different resolutions with multiple linearized physical processes to capture fast-growing perturbations from mesoscale to synoptic scale in target areas and combining these SVs by using a Gaussian sampling method with amplitude coefficients to generate initial perturbations. Following that, the energy norm, energy spectrum, and structure of multiscale SVs and their impact on GEPS are analyzed based on a batch experiment in different seasons. The results show that the multiscale SV initial perturbations can possess more energy and capture more mesoscale uncertainties than the traditional single-SV method. Meanwhile, multiscale SV initial perturbations can reflect the strongest dynamical instability in target areas. Their performances in global ensemble prediction when compared to single-scale SVs are shown to (i) improve the relationship between the ensemble spread and the root-mean-square error and (ii) provide a better probability forecast skill for atmospheric circulation during the late forecast period and for short- to medium-range precipitation. This study provides scientific evidence and application foundations for the design and development of a multiscale SV initial perturbation method for the GEPS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全球集合预测中多尺度奇异向量的初始扰动方法
集合预测被广泛用于表示由初始条件(ICs)误差引起的单一确定性数值天气预报(NWP)的不确定性。传统的奇异矢量(SV)初始扰动方法往往只能捕捉到全球集合预报中同步尺度的初始不确定性,而无法捕捉到中尺度的不确定性。针对这一问题,我们提出了一种基于中国气象局全球集合预报系统(CMA-GEPS)的多尺度 SV 初始扰动方法来量化多尺度初始不确定性。多尺度SV初始扰动方法是利用多种线性化物理过程计算不同分辨率下的多尺度SV,捕捉目标区域从中尺度到天气尺度的快速增长扰动,并利用带振幅系数的高斯采样方法将这些SV组合起来生成初始扰动。随后,基于不同季节的批量试验,分析了多尺度 SV 的能量规范、能量谱和结构及其对 GEPS 的影响。结果表明,与传统的单SV方法相比,多尺度SV初始扰动具有更大的能量,能捕捉到更多的中尺度不确定性。同时,多尺度 SV 初始扰动能反映目标区域最强的动力不稳定性。与单尺度 SV 相比,多尺度 SV 在全球集合预报中的表现为:(i) 改善了集合扩散与均方根误差之间的关系;(ii) 为预报后期大气环流和中短程降水提供了更好的概率预报技能。这项研究为设计和开发用于全球大气环流预报系统的多尺度 SV 初始扰动方法提供了科学依据和应用基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Atmospheric Sciences
Advances in Atmospheric Sciences 地学-气象与大气科学
CiteScore
9.30
自引率
5.20%
发文量
154
审稿时长
6 months
期刊介绍: Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines. Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.
期刊最新文献
Seasonal Variation of the Sea Surface Temperature Growth Rate of ENSO Aircraft Observation and Simulation of the Supercooled Liquid Water Layer in a Warm Conveyor Belt over North China The Persistence and Zonal Scale of Atmospheric Dipolar Modes Comparison of the Minimum Bounding Rectangle and Minimum Circumscribed Ellipse of Rain Cells from TRMM Assessment of Crop Yield in China Simulated by Thirteen Global Gridded Crop Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1