Dispersive Fourier Transform Spectrometer Based on Mode-Locked Er-Doped Fiber Laser for Ammonia Sensing

IF 2.1 4区 物理与天体物理 Q2 OPTICS Photonics Pub Date : 2023-12-31 DOI:10.3390/photonics11010045
Nikolay A. Aprelov, Ilya D. Vatnik, D. Kharenko, Alexey A. Redyuk
{"title":"Dispersive Fourier Transform Spectrometer Based on Mode-Locked Er-Doped Fiber Laser for Ammonia Sensing","authors":"Nikolay A. Aprelov, Ilya D. Vatnik, D. Kharenko, Alexey A. Redyuk","doi":"10.3390/photonics11010045","DOIUrl":null,"url":null,"abstract":"Dispersive Fourier transform (DFT) has emerged as a powerful technique, enabling the transformation of spectral information from an optical pulse into a temporal waveform. This advancement facilitates the implementation of absorption spectroscopy using a single-pixel photodetector and a pulsed laser, particularly effective when operating on wavelengths near the absorption lines of the gas under study. This paper introduces a DFT-spectrometer employing a mode-locked tunable fiber laser with the central wavelength of 1531.6 nm. We demonstrate fast acquisition NH3 absorption spectroscopy with a 0.2 nm spectral resolution, achieved through the utilization of the HITRAN database for estimating ammonia concentrations. Alongside the successful demonstration of NH3 absorption spectroscopy, we explore practical limiting factors influencing the system’s performance. Furthermore, we discuss potential avenues for enhancing sensitivity and spectral resolution, aiming to enable more robust and accurate gas sensing applications.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"120 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010045","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dispersive Fourier transform (DFT) has emerged as a powerful technique, enabling the transformation of spectral information from an optical pulse into a temporal waveform. This advancement facilitates the implementation of absorption spectroscopy using a single-pixel photodetector and a pulsed laser, particularly effective when operating on wavelengths near the absorption lines of the gas under study. This paper introduces a DFT-spectrometer employing a mode-locked tunable fiber laser with the central wavelength of 1531.6 nm. We demonstrate fast acquisition NH3 absorption spectroscopy with a 0.2 nm spectral resolution, achieved through the utilization of the HITRAN database for estimating ammonia concentrations. Alongside the successful demonstration of NH3 absorption spectroscopy, we explore practical limiting factors influencing the system’s performance. Furthermore, we discuss potential avenues for enhancing sensitivity and spectral resolution, aiming to enable more robust and accurate gas sensing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模式锁定掺铒光纤激光器的色散傅立叶变换光谱仪用于氨传感
色散傅里叶变换(DFT)已成为一种强大的技术,可将光脉冲的光谱信息转换为时间波形。这一进步有助于使用单像素光电探测器和脉冲激光器实施吸收光谱分析,尤其是在波长接近所研究气体的吸收线时更为有效。本文介绍了一种使用中心波长为 1531.6 nm 的模式锁定可调谐光纤激光器的 DFT 光谱仪。通过利用 HITRAN 数据库估算氨气浓度,我们展示了光谱分辨率为 0.2 nm 的快速采集 NH3 吸收光谱。在成功演示 NH3 吸收光谱的同时,我们还探讨了影响系统性能的实际限制因素。此外,我们还讨论了提高灵敏度和光谱分辨率的潜在途径,旨在实现更强大、更准确的气体传感应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Complex Noise-Based Phase Retrieval Using Total Variation and Wavelet Transform Regularization Investigation of Multiple High Quality-Factor Fano Resonances in Asymmetric Nanopillar Arrays for Optical Sensing An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements Dual-Polarized Reconfigurable Manipulation Based on Flexible-Printed Intelligent Reflection Surface Multi-Array Visible-Light Optical Generalized Spatial Multiplexing–Multiple Input Multiple-Output System with Pearson Coefficient-Based Antenna Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1