{"title":"A receptive field transfer strategy via layer-aligned distillation learning for fault signal denoising","authors":"Huaxiang Pu, Ke Zhang, Haifeng Li","doi":"10.1088/1361-6501/ad19bf","DOIUrl":null,"url":null,"abstract":"To improve fault diagnosis performance in complex noise environments, effective signal denoising techniques are necessary. However, traditional denoising methods have proven inadequate for multivariate fault signal denoising, neglecting the correlation among these signals. To this end, we propose a novel denoising module, inspired by traditional signal decomposition and reconstruction methods. Furthermore, to enhance the performance of proposed denoising module, we consider the influence of the receptive field and develop a receptive field transfer strategy using layer-aligned distillation learning. The experiments demonstrate that our approach effectively balances the denoising performance and computational load, offering a novel strategy for developing high-performance denoising networks. What's more, our strategy reduces the difficulty for fault diagnosis tasks under complex noise environments.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":" 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad19bf","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To improve fault diagnosis performance in complex noise environments, effective signal denoising techniques are necessary. However, traditional denoising methods have proven inadequate for multivariate fault signal denoising, neglecting the correlation among these signals. To this end, we propose a novel denoising module, inspired by traditional signal decomposition and reconstruction methods. Furthermore, to enhance the performance of proposed denoising module, we consider the influence of the receptive field and develop a receptive field transfer strategy using layer-aligned distillation learning. The experiments demonstrate that our approach effectively balances the denoising performance and computational load, offering a novel strategy for developing high-performance denoising networks. What's more, our strategy reduces the difficulty for fault diagnosis tasks under complex noise environments.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.