1-D Convolutional Neural Network-Based Models for Cooperative Spectrum Sensing

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2023-12-29 DOI:10.3390/fi16010014
Omar Serghini, H. Semlali, A. Maali, A. Ghammaz, Salvatore Serrano
{"title":"1-D Convolutional Neural Network-Based Models for Cooperative Spectrum Sensing","authors":"Omar Serghini, H. Semlali, A. Maali, A. Ghammaz, Salvatore Serrano","doi":"10.3390/fi16010014","DOIUrl":null,"url":null,"abstract":"Spectrum sensing is an essential function of cognitive radio technology that can enable the reuse of available radio resources by so-called secondary users without creating harmful interference with licensed users. The application of machine learning techniques to spectrum sensing has attracted considerable interest in the literature. In this contribution, we study cooperative spectrum sensing in a cognitive radio network where multiple secondary users cooperate to detect a primary user. We introduce multiple cooperative spectrum sensing schemes based on a deep neural network, which incorporate a one-dimensional convolutional neural network and a long short-term memory network. The primary objective of these schemes is to effectively learn the activity patterns of the primary user. The scenario of an imperfect transmission channel is considered for service messages to demonstrate the robustness of the proposed model. The performance of the proposed methods is evaluated with the receiver operating characteristic curve, the probability of detection for various SNR levels and the computational time. The simulation results confirm the effectiveness of the bidirectional long short-term memory-based method, surpassing the performance of the other proposed schemes and the current state-of-the-art methods in terms of detection probability, while ensuring a reasonable online detection time.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":" 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Spectrum sensing is an essential function of cognitive radio technology that can enable the reuse of available radio resources by so-called secondary users without creating harmful interference with licensed users. The application of machine learning techniques to spectrum sensing has attracted considerable interest in the literature. In this contribution, we study cooperative spectrum sensing in a cognitive radio network where multiple secondary users cooperate to detect a primary user. We introduce multiple cooperative spectrum sensing schemes based on a deep neural network, which incorporate a one-dimensional convolutional neural network and a long short-term memory network. The primary objective of these schemes is to effectively learn the activity patterns of the primary user. The scenario of an imperfect transmission channel is considered for service messages to demonstrate the robustness of the proposed model. The performance of the proposed methods is evaluated with the receiver operating characteristic curve, the probability of detection for various SNR levels and the computational time. The simulation results confirm the effectiveness of the bidirectional long short-term memory-based method, surpassing the performance of the other proposed schemes and the current state-of-the-art methods in terms of detection probability, while ensuring a reasonable online detection time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于一维卷积神经网络的合作频谱传感模型
频谱感知是认知无线电技术的一项基本功能,可使所谓的次级用户重复使用可用无线电资源,而不会对许可用户造成有害干扰。机器学习技术在频谱感知中的应用在文献中引起了广泛关注。在本文中,我们研究了认知无线电网络中的合作频谱感知,在该网络中,多个次级用户合作检测一个主用户。我们介绍了多种基于深度神经网络的合作频谱感知方案,其中包括一维卷积神经网络和长短期记忆网络。这些方案的主要目标是有效学习主用户的活动模式。为了证明所提模型的鲁棒性,我们考虑了服务信息传输信道不完善的情况。通过接收器工作特性曲线、不同信噪比水平下的检测概率和计算时间来评估所提出方法的性能。仿真结果证实了基于双向长短时记忆的方法的有效性,在检测概率方面超过了其他建议方案和当前最先进方法的性能,同时确保了合理的在线检测时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Controllable Queuing System with Elastic Traffic and Signals for Resource Capacity Planning in 5G Network Slicing Internet-of-Things Traffic Analysis and Device Identification Based on Two-Stage Clustering in Smart Home Environments Resource Indexing and Querying in Large Connected Environments An Analysis of Methods and Metrics for Task Scheduling in Fog Computing Evaluating Embeddings from Pre-Trained Language Models and Knowledge Graphs for Educational Content Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1