Omar Serghini, H. Semlali, A. Maali, A. Ghammaz, Salvatore Serrano
{"title":"1-D Convolutional Neural Network-Based Models for Cooperative Spectrum Sensing","authors":"Omar Serghini, H. Semlali, A. Maali, A. Ghammaz, Salvatore Serrano","doi":"10.3390/fi16010014","DOIUrl":null,"url":null,"abstract":"Spectrum sensing is an essential function of cognitive radio technology that can enable the reuse of available radio resources by so-called secondary users without creating harmful interference with licensed users. The application of machine learning techniques to spectrum sensing has attracted considerable interest in the literature. In this contribution, we study cooperative spectrum sensing in a cognitive radio network where multiple secondary users cooperate to detect a primary user. We introduce multiple cooperative spectrum sensing schemes based on a deep neural network, which incorporate a one-dimensional convolutional neural network and a long short-term memory network. The primary objective of these schemes is to effectively learn the activity patterns of the primary user. The scenario of an imperfect transmission channel is considered for service messages to demonstrate the robustness of the proposed model. The performance of the proposed methods is evaluated with the receiver operating characteristic curve, the probability of detection for various SNR levels and the computational time. The simulation results confirm the effectiveness of the bidirectional long short-term memory-based method, surpassing the performance of the other proposed schemes and the current state-of-the-art methods in terms of detection probability, while ensuring a reasonable online detection time.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":" 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Spectrum sensing is an essential function of cognitive radio technology that can enable the reuse of available radio resources by so-called secondary users without creating harmful interference with licensed users. The application of machine learning techniques to spectrum sensing has attracted considerable interest in the literature. In this contribution, we study cooperative spectrum sensing in a cognitive radio network where multiple secondary users cooperate to detect a primary user. We introduce multiple cooperative spectrum sensing schemes based on a deep neural network, which incorporate a one-dimensional convolutional neural network and a long short-term memory network. The primary objective of these schemes is to effectively learn the activity patterns of the primary user. The scenario of an imperfect transmission channel is considered for service messages to demonstrate the robustness of the proposed model. The performance of the proposed methods is evaluated with the receiver operating characteristic curve, the probability of detection for various SNR levels and the computational time. The simulation results confirm the effectiveness of the bidirectional long short-term memory-based method, surpassing the performance of the other proposed schemes and the current state-of-the-art methods in terms of detection probability, while ensuring a reasonable online detection time.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.