Emanuele Santonicola, Ennio Andrea Adinolfi, Simone Coppola, Francesco Pascale
{"title":"Automotive Cybersecurity Application Based on CARDIAN","authors":"Emanuele Santonicola, Ennio Andrea Adinolfi, Simone Coppola, Francesco Pascale","doi":"10.3390/fi16010010","DOIUrl":null,"url":null,"abstract":"Nowadays, a vehicle can contain from 20 to 100 ECUs, which are responsible for ordering, controlling and monitoring all the components of the vehicle itself. Each of these units can also send and receive information to other units on the network or externally. For most vehicles, the controller area network (CAN) is the main communication protocol and system used to build their internal network. Technological development, the growing integration of devices and the numerous advances in the field of connectivity have allowed the vehicle to become connected, and the flow of information exchanged between the various ECUs (electronic control units) becomes increasingly important and varied. Furthermore, the vehicle itself is capable of exchanging information with other vehicles, with the surrounding environment and with the Internet. As shown by the CARDIAN project, this type of innovation allows the user an increasingly safe and varied driving experience, but at the same time, it introduces a series of vulnerabilities and dangers due to the connection itself. The job of making the vehicle safe therefore becomes critical. In recent years, it has been demonstrated in multiple ways how easy it is to compromise the safety of a vehicle and its passengers by injecting malicious messages into the CAN network present inside the vehicle itself. The purpose of this article is the construction of a system that, integrated within the vehicle network, is able to effectively recognize any type of intrusion and tampering.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"72 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, a vehicle can contain from 20 to 100 ECUs, which are responsible for ordering, controlling and monitoring all the components of the vehicle itself. Each of these units can also send and receive information to other units on the network or externally. For most vehicles, the controller area network (CAN) is the main communication protocol and system used to build their internal network. Technological development, the growing integration of devices and the numerous advances in the field of connectivity have allowed the vehicle to become connected, and the flow of information exchanged between the various ECUs (electronic control units) becomes increasingly important and varied. Furthermore, the vehicle itself is capable of exchanging information with other vehicles, with the surrounding environment and with the Internet. As shown by the CARDIAN project, this type of innovation allows the user an increasingly safe and varied driving experience, but at the same time, it introduces a series of vulnerabilities and dangers due to the connection itself. The job of making the vehicle safe therefore becomes critical. In recent years, it has been demonstrated in multiple ways how easy it is to compromise the safety of a vehicle and its passengers by injecting malicious messages into the CAN network present inside the vehicle itself. The purpose of this article is the construction of a system that, integrated within the vehicle network, is able to effectively recognize any type of intrusion and tampering.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.