N. Bagheri, Y. Bendavid, M. Safkhani, S. Rostampour
{"title":"Smart Grid Security: A PUF-Based Authentication and Key Agreement Protocol","authors":"N. Bagheri, Y. Bendavid, M. Safkhani, S. Rostampour","doi":"10.3390/fi16010009","DOIUrl":null,"url":null,"abstract":"A smart grid is an electricity network that uses advanced technologies to facilitate the exchange of information and electricity between utility companies and customers. Although most of the technologies involved in such grids have reached maturity, smart meters—as connected devices—introduce new security challenges. To overcome this significant obstacle to grid modernization, safeguarding privacy has emerged as a paramount concern. In this paper, we begin by evaluating the security levels of recently proposed authentication methods for smart meters. Subsequently, we introduce an enhanced protocol named PPSG, designed for smart grids, which incorporates physical unclonable functions (PUF) and an elliptic curve cryptography (ECC) module to address the vulnerabilities identified in previous approaches. Our security analysis, utilizing a real-or-random (RoR) model, demonstrates that PPSG effectively mitigates the weaknesses found in prior methods. To assess the practicality of PPSG, we conduct simulations using an Arduino UNO board, measuring computation, communication, and energy costs. Our results, including a processing time of 153 ms, a communication cost of 1376 bits, and an energy consumption of 13.468 mJ, align with the requirements of resource-constrained devices within smart grids.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"347 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
A smart grid is an electricity network that uses advanced technologies to facilitate the exchange of information and electricity between utility companies and customers. Although most of the technologies involved in such grids have reached maturity, smart meters—as connected devices—introduce new security challenges. To overcome this significant obstacle to grid modernization, safeguarding privacy has emerged as a paramount concern. In this paper, we begin by evaluating the security levels of recently proposed authentication methods for smart meters. Subsequently, we introduce an enhanced protocol named PPSG, designed for smart grids, which incorporates physical unclonable functions (PUF) and an elliptic curve cryptography (ECC) module to address the vulnerabilities identified in previous approaches. Our security analysis, utilizing a real-or-random (RoR) model, demonstrates that PPSG effectively mitigates the weaknesses found in prior methods. To assess the practicality of PPSG, we conduct simulations using an Arduino UNO board, measuring computation, communication, and energy costs. Our results, including a processing time of 153 ms, a communication cost of 1376 bits, and an energy consumption of 13.468 mJ, align with the requirements of resource-constrained devices within smart grids.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.