A. Musa, Adamu Hussaini, Cheng Qian, Yifan Guo, Wei Yu
{"title":"Open Radio Access Networks for Smart IoT Systems: State of Art and Future Directions","authors":"A. Musa, Adamu Hussaini, Cheng Qian, Yifan Guo, Wei Yu","doi":"10.3390/fi15120380","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) constitutes a vast network comprising various components such as physical devices, vehicles, buildings, and other items equipped with sensors, actuators, and software. These components are interconnected, facilitating the collection and exchange of copious data across networked communications. IoT empowers extensive monitoring and control over a myriad of objects, enabling them to gather and disseminate data that bolster applications, thereby enhancing the system’s capacity for informed decision making, environmental surveillance, and autonomous inter-object interaction, all without the need for direct human involvement. These systems have achieved seamless connectivity requirements using the next-generation wireless network infrastructures (5G, 6G, etc.), while their diverse reliability and quality of service (QoS) requirements across various domains require more efficient solutions. Open RAN (O-RAN), i.e., open radio open access network (RAN), promotes flexibility and intelligence in the next-generation RAN. This article reviews the applications of O-RAN in supporting the next-generation smart world IoT systems by conducting a thorough survey. We propose a generic problem space, which consists of (i) IoT Systems: transportation, industry, healthcare, and energy; (ii) targets: reliable communication, real-time analytics, fault tolerance, interoperability, and integration; and (iii) artificial intelligence and machine learning (AI/ML): reinforcement learning (RL), deep neural networks (DNNs), etc. Furthermore, we outline future research directions concerning robust and scalable solutions, interoperability and standardization, privacy, and security. We present a taxonomy to unveil the security threats to emerge from the O-RAN-assisted IoT systems and the feasible directions to move this research forward.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"176 3 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoT) constitutes a vast network comprising various components such as physical devices, vehicles, buildings, and other items equipped with sensors, actuators, and software. These components are interconnected, facilitating the collection and exchange of copious data across networked communications. IoT empowers extensive monitoring and control over a myriad of objects, enabling them to gather and disseminate data that bolster applications, thereby enhancing the system’s capacity for informed decision making, environmental surveillance, and autonomous inter-object interaction, all without the need for direct human involvement. These systems have achieved seamless connectivity requirements using the next-generation wireless network infrastructures (5G, 6G, etc.), while their diverse reliability and quality of service (QoS) requirements across various domains require more efficient solutions. Open RAN (O-RAN), i.e., open radio open access network (RAN), promotes flexibility and intelligence in the next-generation RAN. This article reviews the applications of O-RAN in supporting the next-generation smart world IoT systems by conducting a thorough survey. We propose a generic problem space, which consists of (i) IoT Systems: transportation, industry, healthcare, and energy; (ii) targets: reliable communication, real-time analytics, fault tolerance, interoperability, and integration; and (iii) artificial intelligence and machine learning (AI/ML): reinforcement learning (RL), deep neural networks (DNNs), etc. Furthermore, we outline future research directions concerning robust and scalable solutions, interoperability and standardization, privacy, and security. We present a taxonomy to unveil the security threats to emerge from the O-RAN-assisted IoT systems and the feasible directions to move this research forward.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.