Optimization of Bioethanol Production from Sugar Bagasse by Aspergillus flavus Using Box Behnken Design

Muhammad Surajo Umar, Auwalu Muttaka, Abdulwahid Abdullahi Naibi, Musa, A.U., K. Kabir
{"title":"Optimization of Bioethanol Production from Sugar Bagasse by Aspergillus flavus Using Box Behnken Design","authors":"Muhammad Surajo Umar, Auwalu Muttaka, Abdulwahid Abdullahi Naibi, Musa, A.U., K. Kabir","doi":"10.57233/ijsgs.v9i3.525","DOIUrl":null,"url":null,"abstract":"\"Bioethanol, a renewable fuel derived from biomass feedstocks like agricultural residues and forestry waste, holds immense promise for sustainable energy production. Notably, sugar bagasse—a residual lignocellulosic material after sugarcane juice extraction—offers a valuable substrate due to its high sugar content. To harness its potential for bioethanol generation, optimizing parameters, such as temperature, pH, and fermentation duration. This study is geared towards the strategic enhancement of bioethanol synthesis from sugar bagasse, employing the Box Behnken experimental design using Aspergillus flavus as the biocatalyst. Employing rigorous statistical modeling and analysis, the investigation dissects the intricate interplay of temperature, pH, and fermentation duration on the bioethanol production kinetics. The outcomes underscore the optimal operational nexus that attains peak bioethanol yield: a thermal setpoint of 32.6°C, a pH milieu of 5.3, and a fermentation interval spanning 57.9 hours. The discerned synergy of these conditions culminates in an impressive bioethanol yield of 41.6 mg/L, manifesting a remarkable 56.9% escalation relative to the baseline conditions. This inquiry not only imparts nuanced insights into the precision-tuning of bioethanol synthesis from sugar bagasse through Aspergillus flavus but also furnishes a pivotal trajectory for the advancement of sustainable, environmentally conscious biofuel production.\"","PeriodicalId":332500,"journal":{"name":"International Journal of Science for Global Sustainability","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Science for Global Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57233/ijsgs.v9i3.525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

"Bioethanol, a renewable fuel derived from biomass feedstocks like agricultural residues and forestry waste, holds immense promise for sustainable energy production. Notably, sugar bagasse—a residual lignocellulosic material after sugarcane juice extraction—offers a valuable substrate due to its high sugar content. To harness its potential for bioethanol generation, optimizing parameters, such as temperature, pH, and fermentation duration. This study is geared towards the strategic enhancement of bioethanol synthesis from sugar bagasse, employing the Box Behnken experimental design using Aspergillus flavus as the biocatalyst. Employing rigorous statistical modeling and analysis, the investigation dissects the intricate interplay of temperature, pH, and fermentation duration on the bioethanol production kinetics. The outcomes underscore the optimal operational nexus that attains peak bioethanol yield: a thermal setpoint of 32.6°C, a pH milieu of 5.3, and a fermentation interval spanning 57.9 hours. The discerned synergy of these conditions culminates in an impressive bioethanol yield of 41.6 mg/L, manifesting a remarkable 56.9% escalation relative to the baseline conditions. This inquiry not only imparts nuanced insights into the precision-tuning of bioethanol synthesis from sugar bagasse through Aspergillus flavus but also furnishes a pivotal trajectory for the advancement of sustainable, environmentally conscious biofuel production."
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用盒式贝肯设计优化黄曲霉利用甘蔗渣生产生物乙醇的工艺
"生物乙醇是一种从农业残留物和林业废弃物等生物质原料中提取的可再生燃料,在可持续能源生产方面前景广阔。值得注意的是,甘蔗渣--甘蔗汁提取后的剩余木质纤维素材料--因其含糖量高而成为一种有价值的基质。要利用其生产生物乙醇的潜力,就必须优化温度、pH 值和发酵时间等参数。本研究以黄曲霉为生物催化剂,采用箱式贝肯实验设计,旨在从战略上提高甘蔗渣合成生物乙醇的效率。通过严格的统计建模和分析,该研究剖析了温度、pH 值和发酵时间对生物乙醇生产动力学的复杂影响。研究结果强调了达到生物乙醇产量峰值的最佳操作关系:温度设定值为 32.6°C,pH 值为 5.3,发酵间隔时间为 57.9 小时。这些条件的协同作用最终使生物乙醇产量达到 41.6 毫克/升,与基线条件相比显著提高了 56.9%。这项研究不仅为通过黄曲霉从甘蔗渣中合成生物乙醇的精确调节提供了细致入微的见解,还为推动可持续、环保型生物燃料的生产提供了重要的轨迹"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-Infection and Risk Prevention in Production Environment: A Multi-criteria Decision-making Approach Analysis of Rainfall Characteristics in Kaduna State, Nigeria from 1999 – 2018 Optimization of Bioethanol Production from Sugar Bagasse by Aspergillus flavus Using Box Behnken Design GIS-Based Evaluation of the Spatio-Temporal Impacts of Rainfall and Temperature Variability on Vegetation Cover in Bauchi State, Nigeria Optimization of Biolubricant from Terminalia catappa (Almond) Seed Oil Using CaO Derived from Limestone as Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1