Sentiment Analysis of ChatGPT Tweets Using Transformer Algorithms

S. Winardi, Mohammad Diqi, Arum Kurnia Sulistyowati, Jelina Imlabla
{"title":"Sentiment Analysis of ChatGPT Tweets Using Transformer Algorithms","authors":"S. Winardi, Mohammad Diqi, Arum Kurnia Sulistyowati, Jelina Imlabla","doi":"10.36499/jinrpl.v5i2.8632","DOIUrl":null,"url":null,"abstract":"This study explores the application of the Transformer model in sentiment analysis of tweets generated by ChatGPT. We used a Kaggle dataset consisting of 217,623 instances labeled as \"Good\", \"Bad\", and \"Neutral\". The Transformer model demonstrated high accuracy (90%) in classifying sentiments, particularly predicting \"Bad\" tweets. However, it showed slightly lower performance for the \"Good\" and \"Neutral\" categories, indicating areas for future research and model refinement. Our findings contribute to the growing body of evidence supporting deep learning methods in sentiment analysis and underscore the potential of AI models like Transformers in handling complex natural language processing tasks. This study broadens the scope for AI applications in social media sentiment analysis.","PeriodicalId":33961,"journal":{"name":"Jurnal Informatika dan Rekayasa Perangkat Lunak","volume":"214 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika dan Rekayasa Perangkat Lunak","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36499/jinrpl.v5i2.8632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the application of the Transformer model in sentiment analysis of tweets generated by ChatGPT. We used a Kaggle dataset consisting of 217,623 instances labeled as "Good", "Bad", and "Neutral". The Transformer model demonstrated high accuracy (90%) in classifying sentiments, particularly predicting "Bad" tweets. However, it showed slightly lower performance for the "Good" and "Neutral" categories, indicating areas for future research and model refinement. Our findings contribute to the growing body of evidence supporting deep learning methods in sentiment analysis and underscore the potential of AI models like Transformers in handling complex natural language processing tasks. This study broadens the scope for AI applications in social media sentiment analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用变形算法对 ChatGPT 微博进行情感分析
本研究探讨了 Transformer 模型在 ChatGPT 生成的推文情感分析中的应用。我们使用了 Kaggle 数据集,该数据集由 217,623 个实例组成,分别标记为 "好"、"坏 "和 "中性"。Transformer 模型在情感分类,尤其是预测 "坏 "推文方面表现出很高的准确率(90%)。不过,它在 "好 "和 "中性 "类别中的表现略低,这表明了未来研究和模型改进的方向。我们的研究结果为越来越多支持情感分析中深度学习方法的证据做出了贡献,并强调了像 Transformers 这样的人工智能模型在处理复杂的自然语言处理任务方面的潜力。这项研究拓宽了人工智能在社交媒体情感分析中的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Classification Model Analysis of ICU Mortality Level using Random Forest and Neural Network Sentiment Analysis of ChatGPT Tweets Using Transformer Algorithms Sistem Pakar Deteksi Dini Tingkat Kecanduan Gadget pada Anak Menggunakan Fuzzy Tsukamoto Sistem Informasi Suhu dan Kelembaban Inkubator Telur Ayam Menggunakan Sensor Dht22 Berbasis Mikrokontroler Rekomendasi Paket Mata Pelajaran Pilihan (MPP) pada SMA Negeri 1 Kebumen Menggunakan Algoritma K-means
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1