Pengembangan Chatbot untuk Meningkatkan Pengetahuan dan Kesadaran Keamanan Siber Menggunakan Long Short-Term Memory

Hilya Anbiyani Fitri Muhyidin, Liptia Venica
{"title":"Pengembangan Chatbot untuk Meningkatkan Pengetahuan dan Kesadaran Keamanan Siber Menggunakan Long Short-Term Memory","authors":"Hilya Anbiyani Fitri Muhyidin, Liptia Venica","doi":"10.36499/jinrpl.v5i2.8818","DOIUrl":null,"url":null,"abstract":"Cyber-crime is becoming more massive as online activities increase. Cybercrime is a criminal act that exploits digital technology to damage, harm, and destroy property. Therefore, it is crucial for internet users to have knowledge of cybersecurity and the world of technology and the internet in order to avoid falling victim to cybercrime. The aim of this study is to develop a chatbot system as a centralized information medium on cybersecurity, technology, and the internet for internet users. The development of this chatbot aims to reduce the risks of cybercrimes and help enhance internet users' awareness of cybercrime. This research employs the AI Project Cycle method in chatbot development and utilizes the Long Short-Term Memory (LSTM) deep learning model algorithm to develop a model that achieves high accuracy. The training results of the LSTM model achieved an accuracy score of 100% and a loss of 3.09% with 400 epochs. Consequently, it can be concluded that the LSTM algorithm is highly effective for training and developing a chatbot model.","PeriodicalId":33961,"journal":{"name":"Jurnal Informatika dan Rekayasa Perangkat Lunak","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika dan Rekayasa Perangkat Lunak","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36499/jinrpl.v5i2.8818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cyber-crime is becoming more massive as online activities increase. Cybercrime is a criminal act that exploits digital technology to damage, harm, and destroy property. Therefore, it is crucial for internet users to have knowledge of cybersecurity and the world of technology and the internet in order to avoid falling victim to cybercrime. The aim of this study is to develop a chatbot system as a centralized information medium on cybersecurity, technology, and the internet for internet users. The development of this chatbot aims to reduce the risks of cybercrimes and help enhance internet users' awareness of cybercrime. This research employs the AI Project Cycle method in chatbot development and utilizes the Long Short-Term Memory (LSTM) deep learning model algorithm to develop a model that achieves high accuracy. The training results of the LSTM model achieved an accuracy score of 100% and a loss of 3.09% with 400 epochs. Consequently, it can be concluded that the LSTM algorithm is highly effective for training and developing a chatbot model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发聊天机器人,利用长短期记忆提高网络安全知识和意识
随着在线活动的增加,网络犯罪的规模也越来越大。网络犯罪是一种利用数字技术损害、伤害和破坏财产的犯罪行为。因此,互联网用户必须了解网络安全知识以及技术和互联网世界,以避免成为网络犯罪的受害者。本研究的目的是开发一个聊天机器人系统,作为网民了解网络安全、技术和互联网的集中信息媒介。该聊天机器人的开发旨在降低网络犯罪风险,帮助提高网民对网络犯罪的认识。本研究在聊天机器人开发过程中采用了人工智能项目循环法,并利用长短期记忆(LSTM)深度学习模型算法开发了一个实现高精度的模型。LSTM 模型的训练结果表明,在 400 个历时中,准确率达到 100%,损失率为 3.09%。因此,可以得出结论:LSTM 算法对训练和开发聊天机器人模型非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Classification Model Analysis of ICU Mortality Level using Random Forest and Neural Network Sentiment Analysis of ChatGPT Tweets Using Transformer Algorithms Sistem Pakar Deteksi Dini Tingkat Kecanduan Gadget pada Anak Menggunakan Fuzzy Tsukamoto Sistem Informasi Suhu dan Kelembaban Inkubator Telur Ayam Menggunakan Sensor Dht22 Berbasis Mikrokontroler Rekomendasi Paket Mata Pelajaran Pilihan (MPP) pada SMA Negeri 1 Kebumen Menggunakan Algoritma K-means
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1