Enhanced Curve-Based Segmentation Method for Point Clouds of Curved and Irregular Structures

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Science and Technology Pub Date : 2024-01-05 DOI:10.1088/1361-6501/ad1ba1
Limei Song, Zongyang Zhang, Chongdi Xu, Yangang Yang, Xinjun Zhu
{"title":"Enhanced Curve-Based Segmentation Method for Point Clouds of Curved and Irregular Structures","authors":"Limei Song, Zongyang Zhang, Chongdi Xu, Yangang Yang, Xinjun Zhu","doi":"10.1088/1361-6501/ad1ba1","DOIUrl":null,"url":null,"abstract":"\n This paper proposes an improved method for model-based segmentation of curved and irregular mounded structures in 3D measurements. The proposed method divides the point cloud data into several levels according to the reasonable width calculated from the density of points, and then fits a curve model with 2D points to each level separately. The classification results of specific types are merged to obtain specific structural measurement data in 3D space. Experiments were conducted on the proposed method using the region growth algorithm (SRG) and the model-based segmentation method (MS) provided in the PCL library as the control group. The results show that the proposed method achieves higher accuracy with a mean intersection merge ratio (MloU) of more than 0.8238, which is at least 37.92% higher than SRG and MS. The proposed method is also faster with a time-consuming only 1/5 of SRG and 1/2 of MS. Therefore, the proposed method is an effective and efficient way to segment the measurement data of curved and irregular mounded structures in 3D measurements. The method proposed in this paper has also applied in the practical robotic grinding task, the root mean square error of the grinding amount is less than 2 mm, and good grinding results are achieved.grinding results are achieved.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"89 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1ba1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an improved method for model-based segmentation of curved and irregular mounded structures in 3D measurements. The proposed method divides the point cloud data into several levels according to the reasonable width calculated from the density of points, and then fits a curve model with 2D points to each level separately. The classification results of specific types are merged to obtain specific structural measurement data in 3D space. Experiments were conducted on the proposed method using the region growth algorithm (SRG) and the model-based segmentation method (MS) provided in the PCL library as the control group. The results show that the proposed method achieves higher accuracy with a mean intersection merge ratio (MloU) of more than 0.8238, which is at least 37.92% higher than SRG and MS. The proposed method is also faster with a time-consuming only 1/5 of SRG and 1/2 of MS. Therefore, the proposed method is an effective and efficient way to segment the measurement data of curved and irregular mounded structures in 3D measurements. The method proposed in this paper has also applied in the practical robotic grinding task, the root mean square error of the grinding amount is less than 2 mm, and good grinding results are achieved.grinding results are achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于曲线的曲面和不规则结构点云增强型分割方法
本文提出了一种基于模型的改进方法,用于在三维测量中对曲线和不规则土墩结构进行分割。该方法根据点的密度计算出的合理宽度,将点云数据划分为多个层次,然后分别对每个层次拟合出具有二维点的曲线模型。合并特定类型的分类结果,即可获得三维空间中的特定结构测量数据。以 PCL 库中提供的区域增长算法(SRG)和基于模型的分割方法(MS)为对照组,对提出的方法进行了实验。结果表明,提出的方法实现了更高的精确度,平均交叉合并比(MloU)超过 0.8238,比 SRG 和 MS 至少高出 37.92%。同时,所提方法耗时仅为 SRG 的 1/5、MS 的 1/2,速度更快。因此,本文提出的方法是在三维测量中分割曲面和不规则土墩结构测量数据的一种有效且高效的方法。本文提出的方法还应用于实际的机器人打磨任务中,打磨量的均方根误差小于 2 毫米,并取得了良好的打磨效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
期刊最新文献
Role of extrinsic factors on magnetoelastic resonance biosensors sensitivity Improved performance of BDS-3 time and frequency transfer based on an epoch differenced model with receiver clock estimation Development of Experimental Device for Inductive Heating of Magnetic Nanoparticles Weakly supervised medical image registration with multi-information guidance A soft sensor model based on an improved semi-supervised stacked autoencoder for just-in-time updating of cement clinker production process data f-CaO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1