Xavier Lefebvre, Antonella Succar, E. Bédard, Michèle Prévost, E. Robert
{"title":"Comparison of aerosol spectrometers : Accounting for evaporation and sampling losses","authors":"Xavier Lefebvre, Antonella Succar, E. Bédard, Michèle Prévost, E. Robert","doi":"10.1088/1361-6501/ad1b9e","DOIUrl":null,"url":null,"abstract":"\n Measuring aerosol size distribution with precision is critical to understand the transmission of pathogens causing respiratory illnesses and to identify risk mitigation strategies. It is however a challenging task as the size of pathogen-carrying particles evolves over time due to evaporation. Although measurement techniques well established in the field of aerosol science are often used to characterize bioaerosols, their performance is seldom assessed with respect to evaporation and deposition in sampling lines. Four instruments providing aerosol size distribution were compared using oil and water-based particles. They each rely on different measurement principles: phase doppler anemometry, light scattering, electrical mobility and aerodynamic impaction. Size distributions of oil-based particles showed consistency across different measurement instruments, but significant discrepancies arose for water-based particles undergoing evaporation. These larger differences result from both evaporation and particle deposition in transit between the sampling point and the measurement inside the instrument. Phase doppler anemometry was best suited for precise size distribution measurement, as it eliminates the need for a sampling line, thereby preventing particle loss or evaporation during transit. With this instrument as a reference, empirical correction factors for evaporation and deposition were derived from dimensionless numbers and experimental data, enabling quantitative assessment of bioaerosol size distribution using different instruments. To obtain the size distribution at the source of the aerosol generation, complete drying of a salt solution was performed. Using the complete drying technique and accounting for losses, sampling instruments can reliably provide this critical information and allow for thorough risk assessment in the context of airborne transmission.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"32 42","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1b9e","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring aerosol size distribution with precision is critical to understand the transmission of pathogens causing respiratory illnesses and to identify risk mitigation strategies. It is however a challenging task as the size of pathogen-carrying particles evolves over time due to evaporation. Although measurement techniques well established in the field of aerosol science are often used to characterize bioaerosols, their performance is seldom assessed with respect to evaporation and deposition in sampling lines. Four instruments providing aerosol size distribution were compared using oil and water-based particles. They each rely on different measurement principles: phase doppler anemometry, light scattering, electrical mobility and aerodynamic impaction. Size distributions of oil-based particles showed consistency across different measurement instruments, but significant discrepancies arose for water-based particles undergoing evaporation. These larger differences result from both evaporation and particle deposition in transit between the sampling point and the measurement inside the instrument. Phase doppler anemometry was best suited for precise size distribution measurement, as it eliminates the need for a sampling line, thereby preventing particle loss or evaporation during transit. With this instrument as a reference, empirical correction factors for evaporation and deposition were derived from dimensionless numbers and experimental data, enabling quantitative assessment of bioaerosol size distribution using different instruments. To obtain the size distribution at the source of the aerosol generation, complete drying of a salt solution was performed. Using the complete drying technique and accounting for losses, sampling instruments can reliably provide this critical information and allow for thorough risk assessment in the context of airborne transmission.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.