Yikun Liu, Song Fu, Lin Lin, Sihao Zhang, Shiwei Suo, Jianjun Xi
{"title":"DECVAE: Data augmentation via conditional variational auto-encoder with distribution enhancement for few-shot fault diagnosis of mechanical system","authors":"Yikun Liu, Song Fu, Lin Lin, Sihao Zhang, Shiwei Suo, Jianjun Xi","doi":"10.1088/1361-6501/ad197c","DOIUrl":null,"url":null,"abstract":"Conditional variational autoencoder (CVAE) has the potential for few-sample fault diagnosis of mechanical systems. Nevertheless, the scarcity of faulty samples leads the augmented samples generated using CVAE suffer from limited diversity. To address the issue, a novel CVAE variant namely CVAE with distribution augmentation (DECVAE) is developed, to generate a set of high-quality augmented samples that are different but share very similar characteristics and categories with the corresponding real samples. First, DECVAE add a new sample distribution distance loss into the optimization objective of traditional CVAE. Amplifying this loss in training process can make the augmented samples cover a larger space, thereby improving diversity. Second, DECVAE introduces an auxiliary classifier into traditional CVAE to enhance the sensitivity to category information, keeping the augmented samples class invariance. Furthermore, to ensure that the information of edge-distributed samples can be fully learned and make augmented samples representative and authentic, a novel multi-model independent fine-tuning strategy is designed to train the DECVAE, which utilizes multiple independent models to fairly focus on all samples of the minority class during DECVAE training. Finally, the effectiveness of the developed DECVAE in few-shot fault diagnosis of mechanical systems is verified on a series of comparative experiments.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"2 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad197c","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conditional variational autoencoder (CVAE) has the potential for few-sample fault diagnosis of mechanical systems. Nevertheless, the scarcity of faulty samples leads the augmented samples generated using CVAE suffer from limited diversity. To address the issue, a novel CVAE variant namely CVAE with distribution augmentation (DECVAE) is developed, to generate a set of high-quality augmented samples that are different but share very similar characteristics and categories with the corresponding real samples. First, DECVAE add a new sample distribution distance loss into the optimization objective of traditional CVAE. Amplifying this loss in training process can make the augmented samples cover a larger space, thereby improving diversity. Second, DECVAE introduces an auxiliary classifier into traditional CVAE to enhance the sensitivity to category information, keeping the augmented samples class invariance. Furthermore, to ensure that the information of edge-distributed samples can be fully learned and make augmented samples representative and authentic, a novel multi-model independent fine-tuning strategy is designed to train the DECVAE, which utilizes multiple independent models to fairly focus on all samples of the minority class during DECVAE training. Finally, the effectiveness of the developed DECVAE in few-shot fault diagnosis of mechanical systems is verified on a series of comparative experiments.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.