An LSTM-based approach to detect transition to lean blowout in swirl-stabilized dump combustion systems

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Energy and AI Pub Date : 2024-01-03 DOI:10.1016/j.egyai.2023.100334
Tryambak Gangopadhyay , Somnath De , Qisai Liu , Achintya Mukhopadhyay , Swarnendu Sen , Soumik Sarkar
{"title":"An LSTM-based approach to detect transition to lean blowout in swirl-stabilized dump combustion systems","authors":"Tryambak Gangopadhyay ,&nbsp;Somnath De ,&nbsp;Qisai Liu ,&nbsp;Achintya Mukhopadhyay ,&nbsp;Swarnendu Sen ,&nbsp;Soumik Sarkar","doi":"10.1016/j.egyai.2023.100334","DOIUrl":null,"url":null,"abstract":"<div><p>Lean combustion is environment friendly with low <span><math><mrow><mi>N</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>X</mi></mrow></msub></mrow></math></span> emissions providing better fuel efficiency in a combustion system. However, approaching towards lean combustion can make engines more susceptible to an undesirable phenomenon called lean blowout (LBO) that can cause flame extinction leading to sudden loss of power. During the design stage, it is quite challenging for the scientists to accurately determine the optimal operating limits to avoid sudden LBO occurrences. Therefore, it is crucial to develop accurate and computationally tractable frameworks for online LBO prediction in low <span><math><mrow><mi>N</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>X</mi></mrow></msub></mrow></math></span> emission engines. To the best of our knowledge, for the first time, we propose a deep learning approach to detect the transition to LBO in combustion systems. In this work, we utilize a laboratory-scale swirl-stabilized combustor to collect acoustic data for different protocols. For each protocol, starting far from LBO, we gradually move towards the LBO regime, capturing a quasi-static time series dataset at different conditions. Using one of the protocols in our dataset as the reference protocol, we find a transition state metric for our trained deep learning model to detect the imminent LBO in other test protocols. We find that our proposed approach is more precise and computationally faster than other baseline models to detect the transition to LBO. Therefore, we endorse this technique for monitoring the operation of lean combustion engines in real time.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666546823001064/pdfft?md5=db823c0c0bacb56e521ff7d88c91b69f&pid=1-s2.0-S2666546823001064-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546823001064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Lean combustion is environment friendly with low NOX emissions providing better fuel efficiency in a combustion system. However, approaching towards lean combustion can make engines more susceptible to an undesirable phenomenon called lean blowout (LBO) that can cause flame extinction leading to sudden loss of power. During the design stage, it is quite challenging for the scientists to accurately determine the optimal operating limits to avoid sudden LBO occurrences. Therefore, it is crucial to develop accurate and computationally tractable frameworks for online LBO prediction in low NOX emission engines. To the best of our knowledge, for the first time, we propose a deep learning approach to detect the transition to LBO in combustion systems. In this work, we utilize a laboratory-scale swirl-stabilized combustor to collect acoustic data for different protocols. For each protocol, starting far from LBO, we gradually move towards the LBO regime, capturing a quasi-static time series dataset at different conditions. Using one of the protocols in our dataset as the reference protocol, we find a transition state metric for our trained deep learning model to detect the imminent LBO in other test protocols. We find that our proposed approach is more precise and computationally faster than other baseline models to detect the transition to LBO. Therefore, we endorse this technique for monitoring the operation of lean combustion engines in real time.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 LSTM 的方法检测漩涡稳定倾倒燃烧系统中向贫喷过渡的情况
稀薄燃烧对环境友好,氮氧化物排放量低,可提高燃烧系统的燃料效率。然而,接近稀薄燃烧会使发动机更容易受到一种称为 "稀薄喷火"(LBO)的不良现象的影响,这种现象会导致火焰熄灭,从而突然失去动力。在设计阶段,科学家们要准确确定最佳工作极限以避免突然发生 LBO,这是一项相当具有挑战性的工作。因此,为低氮氧化物排放发动机的在线 LBO 预测开发精确且可计算的框架至关重要。据我们所知,我们首次提出了一种深度学习方法来检测燃烧系统向 LBO 的过渡。在这项工作中,我们利用实验室规模的漩涡稳定燃烧器收集不同协议的声学数据。对于每种协议,我们从远离 LBO 开始,逐渐向 LBO 机制过渡,在不同条件下捕获准静态时间序列数据集。使用数据集中的一个协议作为参考协议,我们为训练有素的深度学习模型找到一个过渡状态度量,以检测其他测试协议中即将出现的 LBO。我们发现,在检测向 LBO 过渡方面,我们提出的方法比其他基准模型更精确,计算速度更快。因此,我们赞同将这项技术用于实时监测贫燃发动机的运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
期刊最新文献
Optimizing catalyst layer composition of PEM fuel cell via machine learning: Insights from in-house experimental data A novel optimization framework for natural gas transportation pipeline networks based on deep reinforcement learning Exploring public attention in the circular economy through topic modelling with twin hyperparameter optimisation Adaptive control systems for dual axis tracker using clear sky index and output power forecasting based on ML in overcast weather conditions Supporting energy policy research with large language models: A case study in wind energy siting ordinances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1