{"title":"Synthesis by Electrolysis of Iron-Based Fluoride as Cathode Materials for Lithium Ion Batteries","authors":"Zengzeng Zheng, Jin Shi, Xujie Xiao, Xu Li, Jingkang Chen, Chengfei Zhu","doi":"10.1007/s13391-023-00478-5","DOIUrl":null,"url":null,"abstract":"<div><p>The hydrated iron fluoride (Fe<sub>3</sub>F<sub>8</sub>·2H<sub>2</sub>O) with mixed valence cations is successfully synthesized through a rapid electrolytic synthesis route for the first time using low-concentration HF solution as fluorine source and cheap carbon steel as iron source. By controlling the value of current density, submicron structured hydrated iron fluoride with different grain sizes is obtained. The thermal behavior of Fe<sub>3</sub>F<sub>8</sub>·2H<sub>2</sub>O under air atmosphere is studied. The product cooling to room temperature after heat treatment is FeF<sub>2.2</sub>(OH)<sub>0.8</sub>·0.33H<sub>2</sub>O, which is determined by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared spectrometer (FT-IR), and thermogravimetry/differential scanning calorimetry (TG/DSC). The evaluation of the electrochemical performance of FeF<sub>2.2</sub>(OH)<sub>0.8</sub>·0.33H<sub>2</sub>O as a cathode for lithium batteries shows that it has an initial discharge capacity as high as 580 mAh g<sup>−1</sup> in a wide voltage range of 1.0–4.5 V at a current density of 20 mA g<sup>−1</sup>, but the cycle performance is not very satisfactory, only 170 mAh g<sup>−1</sup> after 50 cycles.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"306 - 316"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-023-00478-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00478-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrated iron fluoride (Fe3F8·2H2O) with mixed valence cations is successfully synthesized through a rapid electrolytic synthesis route for the first time using low-concentration HF solution as fluorine source and cheap carbon steel as iron source. By controlling the value of current density, submicron structured hydrated iron fluoride with different grain sizes is obtained. The thermal behavior of Fe3F8·2H2O under air atmosphere is studied. The product cooling to room temperature after heat treatment is FeF2.2(OH)0.8·0.33H2O, which is determined by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared spectrometer (FT-IR), and thermogravimetry/differential scanning calorimetry (TG/DSC). The evaluation of the electrochemical performance of FeF2.2(OH)0.8·0.33H2O as a cathode for lithium batteries shows that it has an initial discharge capacity as high as 580 mAh g−1 in a wide voltage range of 1.0–4.5 V at a current density of 20 mA g−1, but the cycle performance is not very satisfactory, only 170 mAh g−1 after 50 cycles.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.