Mengjia Wang, Riquan Zheng, Mengmeng Jiang, Xiaoqiang Li
{"title":"Conductive Carbon Fabric from Waste Viscose for Electrothermal and Photothermal Management","authors":"Mengjia Wang, Riquan Zheng, Mengmeng Jiang, Xiaoqiang Li","doi":"10.1007/s13391-024-00533-9","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, there has been increasing interest in developing solutions to maintain human body temperature in extremely cold environments. Wearable electrically heated fabrics have been extensively researched, however, their complex preparation processes and associated environmental concerns hindered their widespread adoption. To address these challenges, this study focuses on develop a novel materials, which suitable for wearable applications with the low energy consumption and environmentally friendly. In this work, a simple and eco-friendly preparation method was proposed. The viscose-based carbon fabric (VCF) was prepared using viscose fabric as the raw material by means of high-temperature carbonization. The VCF exhibits excellent flexible, good electrical conductivity and remarkable photothermal conversion properties as well. VCF can absorb sunlight for heating and also has electric heating properties. Due to its outstanding flexible and thermal capability, the VCF was applied to heat human body under solar radiation; furthermore, the high electric heating efficiency makes it suitable for a wide range of applications, including indoor heating or de-icing treatment. With its strong potential for wearable applications, viscose-based carbon fabric presents a promising, energy-efficient solution for all-day personal thermal management. This research offers a broad and sustainable approach to developing advanced thermal management fabrics for diverse environmental conditions. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"56 - 69"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00533-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, there has been increasing interest in developing solutions to maintain human body temperature in extremely cold environments. Wearable electrically heated fabrics have been extensively researched, however, their complex preparation processes and associated environmental concerns hindered their widespread adoption. To address these challenges, this study focuses on develop a novel materials, which suitable for wearable applications with the low energy consumption and environmentally friendly. In this work, a simple and eco-friendly preparation method was proposed. The viscose-based carbon fabric (VCF) was prepared using viscose fabric as the raw material by means of high-temperature carbonization. The VCF exhibits excellent flexible, good electrical conductivity and remarkable photothermal conversion properties as well. VCF can absorb sunlight for heating and also has electric heating properties. Due to its outstanding flexible and thermal capability, the VCF was applied to heat human body under solar radiation; furthermore, the high electric heating efficiency makes it suitable for a wide range of applications, including indoor heating or de-icing treatment. With its strong potential for wearable applications, viscose-based carbon fabric presents a promising, energy-efficient solution for all-day personal thermal management. This research offers a broad and sustainable approach to developing advanced thermal management fabrics for diverse environmental conditions.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.