A system dynamic modeling to evaluate fluidized bed dryers under tempering and recirculation strategies

R. Amantea, Daniele Sarri, Giuseppe Rossi
{"title":"A system dynamic modeling to evaluate fluidized bed dryers under tempering and recirculation strategies","authors":"R. Amantea, Daniele Sarri, Giuseppe Rossi","doi":"10.24294/ace.v7i1.3276","DOIUrl":null,"url":null,"abstract":"Grain drying control strategies aim for a rational energy use and a final product with low breakage levels. However, an experimental approach may be prohibitive due to the costs, scale, and theoretical complexity of this operation. The simulation environment is suitable to design equipment’s and plan operations strategies with low cost and high certainty. This work utilized system dynamics modelling to quantify the percentage of product breakage during drying in fluidized bed dryers under recirculation and tempering strategies. A sensitivity analysis of the model’s input parameters including different fractions of recirculation was performed, showing their effects on drying and post-drying product quality. Finally, we present optimizations from different objectives of drying operations. The recirculation strategy worked as an attenuator to the drying rates and combined with tempering strategy reached a minimum breakage level.","PeriodicalId":505470,"journal":{"name":"Applied Chemical Engineering","volume":"48 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/ace.v7i1.3276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Grain drying control strategies aim for a rational energy use and a final product with low breakage levels. However, an experimental approach may be prohibitive due to the costs, scale, and theoretical complexity of this operation. The simulation environment is suitable to design equipment’s and plan operations strategies with low cost and high certainty. This work utilized system dynamics modelling to quantify the percentage of product breakage during drying in fluidized bed dryers under recirculation and tempering strategies. A sensitivity analysis of the model’s input parameters including different fractions of recirculation was performed, showing their effects on drying and post-drying product quality. Finally, we present optimizations from different objectives of drying operations. The recirculation strategy worked as an attenuator to the drying rates and combined with tempering strategy reached a minimum breakage level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估回火和再循环策略下流化床干燥器的系统动态模型
谷物干燥控制策略的目标是合理使用能源,并使最终产品的破损程度较低。然而,由于这种操作的成本、规模和理论复杂性,实验方法可能会令人望而却步。模拟环境适用于以低成本和高确定性来设计设备和规划操作策略。这项工作利用系统动力学建模来量化流化床干燥器在再循环和回火策略下干燥过程中产品破损的百分比。我们对模型的输入参数(包括不同的再循环比例)进行了敏感性分析,显示了这些参数对干燥和干燥后产品质量的影响。最后,我们介绍了不同干燥操作目标的优化情况。再循环策略是干燥速率的衰减器,与调质策略相结合可达到最低破损水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NMR study of nitrate ionic liquids confined between micrometer-spaced plates Characterization of an abundant illitic clay from the Safi region in Morocco and its exploitation in the treatment of industrial effluents loaded with synthetic dyes Study of vinyl group effect on thermal and mechanical properties of some polymers and silicone rubber Development of metal free biochar based material for water electrolysis hydrogen production using anion exchange membrane: Creating circular economy An analysis of polymer material selection and design optimization to improve Structural Integrity in 3D printed aerospace components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1