{"title":"Study of vinyl group effect on thermal and mechanical properties of some polymers and silicone rubber","authors":"Antypas ImadRezakalla, Alexey Gennadyevech1Dyachenko","doi":"10.59429/ace.v7i2.1874","DOIUrl":null,"url":null,"abstract":"The research presented in this article has focused on the identification of the potential use of two methods: weight change analysis and swelling-weight balancing, to study polymer and silicone rubber samples at consistent temperatures for an extended period. This ensures the stability of these materials for future industrial applications. Throughout the research, it was determined that these methods allow for simultaneous observation of various processes to which the samples were exposed, including degradation and thermal oxidation. The analysis of the obtained results has indicated that a sample made of methylvinylsilicon rubber containing 2% vinyl by weight exhibited superior properties compared to other samples. These properties include a decrease in the rate of rubber chain bond breakage, resistance to various solvents, and improved mechanical characteristics.","PeriodicalId":505470,"journal":{"name":"Applied Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59429/ace.v7i2.1874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The research presented in this article has focused on the identification of the potential use of two methods: weight change analysis and swelling-weight balancing, to study polymer and silicone rubber samples at consistent temperatures for an extended period. This ensures the stability of these materials for future industrial applications. Throughout the research, it was determined that these methods allow for simultaneous observation of various processes to which the samples were exposed, including degradation and thermal oxidation. The analysis of the obtained results has indicated that a sample made of methylvinylsilicon rubber containing 2% vinyl by weight exhibited superior properties compared to other samples. These properties include a decrease in the rate of rubber chain bond breakage, resistance to various solvents, and improved mechanical characteristics.