An analysis of polymer material selection and design optimization to improve Structural Integrity in 3D printed aerospace components

Raja S., Mohammed AhmedMustafa, Ghadir KamilGhadir, Hayder MusaadAl-Tmimi, Zaid KhalidAlani, Maher AliRusho, Rajeswari N.
{"title":"An analysis of polymer material selection and design optimization to improve Structural Integrity in 3D printed aerospace components","authors":"Raja S., Mohammed AhmedMustafa, Ghadir KamilGhadir, Hayder MusaadAl-Tmimi, Zaid KhalidAlani, Maher AliRusho, Rajeswari N.","doi":"10.59429/ace.v7i2.1875","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of material selection and design optimization techniques to enhance the structural integrity of 3D printed aerospace components. The study highlights the importance of considering material characteristics and design factors such as shape, orientation, and support structures in order to achieve reliable and high-performance components. Various materials, including metals and polymers, commonly used in aerospace applications are evaluated, along with their properties and limitations in the context of 3D printing. Furthermore, the impact of different printing parameters on the structural integrity of the components is discussed. The study identifies optimization strategies such as topology optimization, lattice structures, and infill patterns, which can significantly improve the strength and durability of 3D printed parts. The results demonstrate the potential of these techniques to optimize the design and material selection of aerospace components, leading to lighter, more efficient, and reliable parts for air and space vehicles.","PeriodicalId":505470,"journal":{"name":"Applied Chemical Engineering","volume":"21 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59429/ace.v7i2.1875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an analysis of material selection and design optimization techniques to enhance the structural integrity of 3D printed aerospace components. The study highlights the importance of considering material characteristics and design factors such as shape, orientation, and support structures in order to achieve reliable and high-performance components. Various materials, including metals and polymers, commonly used in aerospace applications are evaluated, along with their properties and limitations in the context of 3D printing. Furthermore, the impact of different printing parameters on the structural integrity of the components is discussed. The study identifies optimization strategies such as topology optimization, lattice structures, and infill patterns, which can significantly improve the strength and durability of 3D printed parts. The results demonstrate the potential of these techniques to optimize the design and material selection of aerospace components, leading to lighter, more efficient, and reliable parts for air and space vehicles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析聚合物材料的选择和设计优化,以提高 3D 打印航空航天部件的结构完整性
本文分析了材料选择和设计优化技术,以提高 3D 打印航空航天组件的结构完整性。研究强调了考虑材料特性和设计因素(如形状、方向和支撑结构)的重要性,以实现可靠和高性能的组件。研究评估了航空航天应用中常用的各种材料,包括金属和聚合物,以及它们在三维打印中的特性和局限性。此外,还讨论了不同打印参数对部件结构完整性的影响。研究确定了拓扑优化、晶格结构和填充图案等优化策略,这些策略可以显著提高 3D 打印部件的强度和耐用性。研究结果表明,这些技术具有优化航空航天部件设计和材料选择的潜力,可为航空和航天器制造出更轻、更高效、更可靠的部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NMR study of nitrate ionic liquids confined between micrometer-spaced plates Characterization of an abundant illitic clay from the Safi region in Morocco and its exploitation in the treatment of industrial effluents loaded with synthetic dyes Study of vinyl group effect on thermal and mechanical properties of some polymers and silicone rubber Development of metal free biochar based material for water electrolysis hydrogen production using anion exchange membrane: Creating circular economy An analysis of polymer material selection and design optimization to improve Structural Integrity in 3D printed aerospace components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1