Impact of fine particulate matter on latent tuberculosis infection and active tuberculosis in older adults: a population-based multicentre cohort study.
{"title":"Impact of fine particulate matter on latent tuberculosis infection and active tuberculosis in older adults: a population-based multicentre cohort study.","authors":"Tonglei Guo, Sifan Tian, Henan Xin, Jiang Du, Xuefang Cao, Boxuan Feng, Yijun He, Yongpeng He, Dakuan Wang, Bin Zhang, Zisen Liu, Jiaoxia Yan, Lingyu Shen, Yuanzhi Di, Yanxiao Chen, Qi Jin, Shouguo Pan, Marianthi-Anna Kioumourtzoglou, Lei Gao, Xu Gao","doi":"10.1080/22221751.2024.2302852","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence showed that air pollution was associated with an increased risk of tuberculosis (TB). This study aimed to study the impact of long-term exposure to ambient particulate matter with an aerodynamic diameter less than 2.5 μm (PM<sub>2.5</sub>) on the acquisition of LTBI and on the risk of subsequent active disease development among rural older adults from a multicentre cohort, which have not yet been investigated to date. A total of 4790 older adults were included in a population-based, multicentre, prospective cohort study (LATENTTB-NSTM) from 2013 to 2018. The level of long-term exposure to PM<sub>2.5</sub> for each participant was assessed by aggregating satellite-based estimates. Logistic regression and time-varying Cox proportional hazards models with province-level random intercepts were employed to assess associations of long-term exposures to PM<sub>2.5</sub> with the risk of LTBI and subsequent development of active TB, respectively. Out of 4790 participants, 3284 were LTBI-free at baseline, among whom 2806 completed the one-year follow-up and 127 developed newly identified LTBI. No significant associations were identified between PM<sub>2.5</sub> and the risk of LTBI. And among 1506 participants with LTBI at baseline, 30 active TB cases were recorded during the 5-year follow-up. Particularly, an increment of 5 μg/m<sup>3</sup> in 2-year moving averaged PM<sub>2.5</sub> was associated with a 50.6% increased risk of active TB (HR = 1.506, 95% CI: 1.161-1.955). Long-term air pollution might be a neglected risk factor for active TB development from LTBI, especially for those living in developing or less-developed areas where the air quality is poor.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826784/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2024.2302852","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Evidence showed that air pollution was associated with an increased risk of tuberculosis (TB). This study aimed to study the impact of long-term exposure to ambient particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) on the acquisition of LTBI and on the risk of subsequent active disease development among rural older adults from a multicentre cohort, which have not yet been investigated to date. A total of 4790 older adults were included in a population-based, multicentre, prospective cohort study (LATENTTB-NSTM) from 2013 to 2018. The level of long-term exposure to PM2.5 for each participant was assessed by aggregating satellite-based estimates. Logistic regression and time-varying Cox proportional hazards models with province-level random intercepts were employed to assess associations of long-term exposures to PM2.5 with the risk of LTBI and subsequent development of active TB, respectively. Out of 4790 participants, 3284 were LTBI-free at baseline, among whom 2806 completed the one-year follow-up and 127 developed newly identified LTBI. No significant associations were identified between PM2.5 and the risk of LTBI. And among 1506 participants with LTBI at baseline, 30 active TB cases were recorded during the 5-year follow-up. Particularly, an increment of 5 μg/m3 in 2-year moving averaged PM2.5 was associated with a 50.6% increased risk of active TB (HR = 1.506, 95% CI: 1.161-1.955). Long-term air pollution might be a neglected risk factor for active TB development from LTBI, especially for those living in developing or less-developed areas where the air quality is poor.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.