A microfluidic cover converts a standard 96-well plate into a mass-transport-controlled immunoassay system

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Biomicrofluidics Pub Date : 2024-01-18 DOI:10.1063/5.0183651
Sheng Wang, You Zhou, Zhenyu Li
{"title":"A microfluidic cover converts a standard 96-well plate into a mass-transport-controlled immunoassay system","authors":"Sheng Wang, You Zhou, Zhenyu Li","doi":"10.1063/5.0183651","DOIUrl":null,"url":null,"abstract":"96-well microtiter plates, widely used in immunoassays, face challenges such as prolonged assay time and limited sensitivity due to the lack of analyte transport control. Orbital shakers, commonly employed to facilitate mass transport, offer limited improvements and can introduce assay inconsistencies. While microfluidic devices offer performance enhancements, their complexity and incompatibility with existing platforms limit their wide adoption. This study introduces a novel microfluidic 96-well cover designed to convert a standard 96-well plate to a mass-transport-controlled surface bioreactor. The cover employs microfluidic methods to enhance the diffusion flux of analytes toward the receptors immobilized on the well bottom. Both simulation and experimental results demonstrated that the cover significantly enhances the capture rate of analyte molecules, resulting in increased signal strength for various detection methods and a lower detection limit. The cover serves as an effective add-on to standard 96-well plates, offering enhanced assay performance without requiring modifications to existing infrastructure or reagents. This innovation holds promise for improving the efficiency and reliability of microtiter plate based immunoassays.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0183651","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

96-well microtiter plates, widely used in immunoassays, face challenges such as prolonged assay time and limited sensitivity due to the lack of analyte transport control. Orbital shakers, commonly employed to facilitate mass transport, offer limited improvements and can introduce assay inconsistencies. While microfluidic devices offer performance enhancements, their complexity and incompatibility with existing platforms limit their wide adoption. This study introduces a novel microfluidic 96-well cover designed to convert a standard 96-well plate to a mass-transport-controlled surface bioreactor. The cover employs microfluidic methods to enhance the diffusion flux of analytes toward the receptors immobilized on the well bottom. Both simulation and experimental results demonstrated that the cover significantly enhances the capture rate of analyte molecules, resulting in increased signal strength for various detection methods and a lower detection limit. The cover serves as an effective add-on to standard 96-well plates, offering enhanced assay performance without requiring modifications to existing infrastructure or reagents. This innovation holds promise for improving the efficiency and reliability of microtiter plate based immunoassays.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微流体盖将标准 96 孔板转换为质量传输控制免疫测定系统
96 孔微孔板广泛用于免疫测定,但由于缺乏分析物迁移控制,它面临着测定时间长、灵敏度有限等挑战。通常用于促进质量传输的轨道振动器只能提供有限的改进,并可能导致测定结果不一致。微流控装置虽然能提高性能,但其复杂性和与现有平台的不兼容性限制了其广泛应用。本研究介绍了一种新型微流体 96 孔盖,旨在将标准 96 孔板转换为质量传输控制表面生物反应器。孔盖采用微流体方法提高分析物向固定在孔底的受体的扩散通量。模拟和实验结果表明,盖板能显著提高分析分子的捕获率,从而提高各种检测方法的信号强度并降低检测限。该盖板可作为标准 96 孔板的有效附加组件,在无需修改现有基础设施或试剂的情况下提高检测性能。这项创新有望提高基于微孔板的免疫测定的效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
期刊最新文献
Microfluidics for foodborne bacteria analysis: Moving toward multiple technologies integration. Wicking pumps for microfluidics. Lab-on-a-chip models of cardiac inflammation. In situ 3D polymerization (IS-3DP): Implementing an aqueous two-phase system for the formation of 3D objects inside a microfluidic channel. Non-invasive measurement of wall shear stress in microfluidic chip for osteoblast cell culture using improved depth estimation of defocus particle tracking method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1