{"title":"Synthesis, evaluation, and monitoring of red amaranth extract for power production","authors":"N Y Tanisa, K A Khan, M Salahuddin","doi":"10.1088/2043-6262/ad1a9f","DOIUrl":null,"url":null,"abstract":"The scientific paper describes the synthesis of silver nanoparticles (Ag NPs) using a fresh red amaranth preparation and explores their potential to enhance the output current of a red amaranth bio-electrolytic cell. The study employed various analytical techniques such as x-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet-visible spectroscopy (UV–vis), dynamic light scattering (DLS), and Raman spectroscopy to characterise and detect the nanoparticles. The UV–vis analysis of the dripping media containing silver nanoparticles exhibited an absorption peak, indicating the presence of the nanoparticles. FTIR was utilised to examine the interaction between the biomaterial components and the oxidation and wrapping of silver nanoparticles. XRD analysis revealed that the synthesised nanoparticles possessed a naturally columnar shape and a face-centered cubic (FCC) structure. The average size and morphology of the nanoparticles were characterised by dynamic light scattering (DLS). Raman spectra revealed the unique surface-enhancing properties of synthesised Ag NPs. The research presented in the paper highlights the remarkable performance of silver nanoparticles in bio-electrolyte power generation systems. It emphasises a straightforward, cost-effective, and environmentally friendly method for producing Ag NPs using red amaranth extract. These findings contribute to the development of a novel framework for bio-electrochemical cells and emphasise the importance of further research on the effects of Ag NPs on these cells. It is found that the open circuit voltage is 3.254 V, short circuit current is 2.256 mA, and load current is 1.987 mA before using the Ag NPs and open circuit voltage is 5.678 volts, short circuit current is 4.212 mA, and load current is 2.887 mA after using the Ag NPs. It is seen that the values of the three parameters have been increased after using the Ag NPs, which ensured the significance of the use of Ag NPs.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"16 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ad1a9f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The scientific paper describes the synthesis of silver nanoparticles (Ag NPs) using a fresh red amaranth preparation and explores their potential to enhance the output current of a red amaranth bio-electrolytic cell. The study employed various analytical techniques such as x-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet-visible spectroscopy (UV–vis), dynamic light scattering (DLS), and Raman spectroscopy to characterise and detect the nanoparticles. The UV–vis analysis of the dripping media containing silver nanoparticles exhibited an absorption peak, indicating the presence of the nanoparticles. FTIR was utilised to examine the interaction between the biomaterial components and the oxidation and wrapping of silver nanoparticles. XRD analysis revealed that the synthesised nanoparticles possessed a naturally columnar shape and a face-centered cubic (FCC) structure. The average size and morphology of the nanoparticles were characterised by dynamic light scattering (DLS). Raman spectra revealed the unique surface-enhancing properties of synthesised Ag NPs. The research presented in the paper highlights the remarkable performance of silver nanoparticles in bio-electrolyte power generation systems. It emphasises a straightforward, cost-effective, and environmentally friendly method for producing Ag NPs using red amaranth extract. These findings contribute to the development of a novel framework for bio-electrochemical cells and emphasise the importance of further research on the effects of Ag NPs on these cells. It is found that the open circuit voltage is 3.254 V, short circuit current is 2.256 mA, and load current is 1.987 mA before using the Ag NPs and open circuit voltage is 5.678 volts, short circuit current is 4.212 mA, and load current is 2.887 mA after using the Ag NPs. It is seen that the values of the three parameters have been increased after using the Ag NPs, which ensured the significance of the use of Ag NPs.