Modal analysis and higher order mode suppression of a high impedance surface-based bowtie antenna

IF 1.4 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Microwave and Wireless Technologies Pub Date : 2024-01-22 DOI:10.1017/s1759078724000047
Jagadeesh Babu Kamili, Amitabha Bhattacharya
{"title":"Modal analysis and higher order mode suppression of a high impedance surface-based bowtie antenna","authors":"Jagadeesh Babu Kamili, Amitabha Bhattacharya","doi":"10.1017/s1759078724000047","DOIUrl":null,"url":null,"abstract":"<p>The present work studies the design of a high impedance surface (HIS)-based bowtie antenna in the framework of characteristic mode analysis (CMA) and proposes the method of higher order mode suppression. A triangular-elliptical bowtie antenna operating in the frequency range of 1.6–6 GHz is designed. The radiating and higher order modes of the proposed antenna are identified using CMA, and an HIS structure is used to enhance the desired mode and to suppress the higher order mode in order to get high gain, good front-to-back ratio (FBR), and stable radiation characteristics. The final designed HIS-based bowtie antenna gives stable radiation patterns from 1.7 to 5.5 GHz with a maximum boresight gain of 10.5 dB. Also, gain from 6.5 to 12 dB and FBR from 8 to 18 dB are obtained in the operating bandwidth. The proposed antenna features the advantages of low profile, wideband and high boresight gain making it suitable for ground-penetrating radar applications.</p>","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"9 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000047","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The present work studies the design of a high impedance surface (HIS)-based bowtie antenna in the framework of characteristic mode analysis (CMA) and proposes the method of higher order mode suppression. A triangular-elliptical bowtie antenna operating in the frequency range of 1.6–6 GHz is designed. The radiating and higher order modes of the proposed antenna are identified using CMA, and an HIS structure is used to enhance the desired mode and to suppress the higher order mode in order to get high gain, good front-to-back ratio (FBR), and stable radiation characteristics. The final designed HIS-based bowtie antenna gives stable radiation patterns from 1.7 to 5.5 GHz with a maximum boresight gain of 10.5 dB. Also, gain from 6.5 to 12 dB and FBR from 8 to 18 dB are obtained in the operating bandwidth. The proposed antenna features the advantages of low profile, wideband and high boresight gain making it suitable for ground-penetrating radar applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高阻抗面基弓形天线的模态分析和高阶模态抑制
本研究在特征模态分析(CMA)框架内研究了基于高阻抗面(HIS)的弓形天线设计,并提出了高阶模态抑制方法。设计了一种工作频率范围为 1.6-6 GHz 的三角椭圆弓形天线。利用 CMA 确定了所提天线的辐射模式和高阶模式,并使用 HIS 结构来增强所需的模式和抑制高阶模式,从而获得高增益、良好的前后比(FBR)和稳定的辐射特性。最终设计的基于 HIS 的弓形天线在 1.7 至 5.5 GHz 范围内具有稳定的辐射模式,最大孔径增益为 10.5 dB。此外,在工作带宽内还获得了 6.5 至 12 dB 的增益和 8 至 18 dB 的 FBR。所提出的天线具有低剖面、宽带和高孔径增益等优点,适合地面穿透雷达应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Microwave and Wireless Technologies
International Journal of Microwave and Wireless Technologies ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.50
自引率
7.10%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.
期刊最新文献
A fast phase calibration method for a liquid crystal microwave phased array antenna assisted by neural network Air-filled substrate integrated waveguide bandpass filter based on miniaturized non-resonant node structure Design of a broadband high-efficiency power amplifier based on a rectangular double transmission line structure A broadband metasurface antenna with multimode resonance Design of a broadband high-efficiency power amplifier based on ring-resonant filter with compensation architecture and a series of continuous modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1