Yulan Sun, Daitao Zhang, Hui Liu, Chunlai Ruan, Xiangfeng Dou, Zhenyong Ren, Ziruo Ge, Zhizhong Du, Haoyuan Jin, Dan Li, Hui Xue, Wei Liu, Zhihai Chen, Quanyi Wang
{"title":"The first reported cases of severe fever with thrombocytopenia syndrome virus from domestic sick camel to humans in China.","authors":"Yulan Sun, Daitao Zhang, Hui Liu, Chunlai Ruan, Xiangfeng Dou, Zhenyong Ren, Ziruo Ge, Zhizhong Du, Haoyuan Jin, Dan Li, Hui Xue, Wei Liu, Zhihai Chen, Quanyi Wang","doi":"10.1080/22221751.2024.2309990","DOIUrl":null,"url":null,"abstract":"<p><p>Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease with an increasing annual incidence rate. In this case report, we presented two patients infected with the SFTS virus, suggesting a potential direct transmission route from camels to humans through blood contact. Both patients developed symptoms after engaging in the slaughtering of one sick camel, while their family members living in the same environment or co-diners remained unaffected. Subsequent detection revealed a high viral load of SFTS virus, reaching 10<sup>10</sup> viral RNA copies/ml, in the sample obtained from the sick camel. Metagenomic sequencing did not identify any other pathogens. The SFTS virus was successfully isolated from both patient and camel samples. The complete nucleotide sequences obtained from the infected patients demonstrated a remarkable 100% similarity to those found in the camel, and genetic evolution analysis classified the virus as genotype A. Additionally, partial sequences of the SFTS virus were identified in ticks captured from the camel rearing environment, however, these sequences showed only 95.9% similarity to those found in camel and humans. Furthermore, immunoglobulin M and immunoglobulin G antibodies were detected in serum samples collected from the patient. Our findings provide evidence that camel may serve as a competent reservoir for transmitting the SFTS virus to humans. Further <i>in vitro</i> investigations into SFTS virus infections in large animals are warranted to understand their role in viral maintenance and transmission.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2309990"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2024.2309990","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease with an increasing annual incidence rate. In this case report, we presented two patients infected with the SFTS virus, suggesting a potential direct transmission route from camels to humans through blood contact. Both patients developed symptoms after engaging in the slaughtering of one sick camel, while their family members living in the same environment or co-diners remained unaffected. Subsequent detection revealed a high viral load of SFTS virus, reaching 1010 viral RNA copies/ml, in the sample obtained from the sick camel. Metagenomic sequencing did not identify any other pathogens. The SFTS virus was successfully isolated from both patient and camel samples. The complete nucleotide sequences obtained from the infected patients demonstrated a remarkable 100% similarity to those found in the camel, and genetic evolution analysis classified the virus as genotype A. Additionally, partial sequences of the SFTS virus were identified in ticks captured from the camel rearing environment, however, these sequences showed only 95.9% similarity to those found in camel and humans. Furthermore, immunoglobulin M and immunoglobulin G antibodies were detected in serum samples collected from the patient. Our findings provide evidence that camel may serve as a competent reservoir for transmitting the SFTS virus to humans. Further in vitro investigations into SFTS virus infections in large animals are warranted to understand their role in viral maintenance and transmission.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.